{"title":"通过不确定性量化实现核反应反演","authors":"Krishnan Raghavan, Alessandro Lovato","doi":"10.1103/physrevc.110.025504","DOIUrl":null,"url":null,"abstract":"Nuclear quantum many-body methods rely on integral transform techniques to infer properties of electroweak response functions from ground-state expectation values. Retrieving the energy dependence of these responses is highly nontrivial, especially for quantum Monte Carlo methods, as it requires inverting the Laplace transform, a notoriously ill-posed problem. In this work, we propose an artificial neural network architecture suitable for accurate response function reconstruction with precise estimation of the uncertainty of the inversion. We demonstrate the capabilities of this new architecture benchmarking it against maximum entropy and previously developed neural network methods designed for a similar task, paying particular attention to its robustness against increasing noise in the input Euclidean responses.","PeriodicalId":20122,"journal":{"name":"Physical Review C","volume":"283 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uncertainty-quantification-enabled inversion of nuclear responses\",\"authors\":\"Krishnan Raghavan, Alessandro Lovato\",\"doi\":\"10.1103/physrevc.110.025504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nuclear quantum many-body methods rely on integral transform techniques to infer properties of electroweak response functions from ground-state expectation values. Retrieving the energy dependence of these responses is highly nontrivial, especially for quantum Monte Carlo methods, as it requires inverting the Laplace transform, a notoriously ill-posed problem. In this work, we propose an artificial neural network architecture suitable for accurate response function reconstruction with precise estimation of the uncertainty of the inversion. We demonstrate the capabilities of this new architecture benchmarking it against maximum entropy and previously developed neural network methods designed for a similar task, paying particular attention to its robustness against increasing noise in the input Euclidean responses.\",\"PeriodicalId\":20122,\"journal\":{\"name\":\"Physical Review C\",\"volume\":\"283 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review C\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevc.110.025504\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review C","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevc.110.025504","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Uncertainty-quantification-enabled inversion of nuclear responses
Nuclear quantum many-body methods rely on integral transform techniques to infer properties of electroweak response functions from ground-state expectation values. Retrieving the energy dependence of these responses is highly nontrivial, especially for quantum Monte Carlo methods, as it requires inverting the Laplace transform, a notoriously ill-posed problem. In this work, we propose an artificial neural network architecture suitable for accurate response function reconstruction with precise estimation of the uncertainty of the inversion. We demonstrate the capabilities of this new architecture benchmarking it against maximum entropy and previously developed neural network methods designed for a similar task, paying particular attention to its robustness against increasing noise in the input Euclidean responses.
期刊介绍:
Physical Review C (PRC) is a leading journal in theoretical and experimental nuclear physics, publishing more than two-thirds of the research literature in the field.
PRC covers experimental and theoretical results in all aspects of nuclear physics, including:
Nucleon-nucleon interaction, few-body systems
Nuclear structure
Nuclear reactions
Relativistic nuclear collisions
Hadronic physics and QCD
Electroweak interaction, symmetries
Nuclear astrophysics