关于霍尔磁流体动力学系统全局正则性问题的另一个评论

IF 1.1 3区 数学 Q1 MATHEMATICS
Mohammad Mahabubur Rahman, Kazuo Yamazaki
{"title":"关于霍尔磁流体动力学系统全局正则性问题的另一个评论","authors":"Mohammad Mahabubur Rahman, Kazuo Yamazaki","doi":"10.1007/s00028-024-01000-6","DOIUrl":null,"url":null,"abstract":"<p>We discover new cancellations upon <span>\\(H^{2}(\\mathbb {R}^{n})\\)</span>-estimate of the Hall term, <span>\\(n \\in \\{2,3\\}\\)</span>. Consequently, first, we derive a regularity criterion for the 3-dimensional Hall-magnetohydrodynamics system in terms of horizontal components of velocity and magnetic fields. Second, we are able to prove the global regularity of the <span>\\(2\\frac{1}{2}\\)</span>-dimensional electron magnetohydrodynamics system with magnetic diffusion <span>\\((-\\Delta )^{\\frac{3}{2}} (b_{1}, b_{2}, 0) + (-\\Delta )^{\\alpha } (0, 0, b_{3})\\)</span> for <span>\\(\\alpha &gt; \\frac{1}{2}\\)</span> despite the fact that <span>\\((-\\Delta )^{\\frac{3}{2}}\\)</span> is the critical diffusive strength. Lastly, we extend this result to the <span>\\(2\\frac{1}{2}\\)</span>-dimensional Hall-magnetohydrodynamics system with <span>\\(-\\Delta u\\)</span> replaced by <span>\\((-\\Delta )^{\\alpha } (u_{1}, u_{2}, 0) -\\Delta (0, 0, u_{3})\\)</span> for <span>\\(\\alpha &gt; \\frac{1}{2}\\)</span>. The sum of the derivatives in diffusion that our result requires is <span>\\(11+ \\epsilon \\)</span> for any <span>\\(\\epsilon &gt; 0\\)</span>, while the sum for the classical <span>\\(2\\frac{1}{2}\\)</span>-dimensional Hall-magnetohydrodynamics system is 12 considering <span>\\(-\\Delta u\\)</span> and <span>\\(-\\Delta b\\)</span>, of which its global regularity issue remains an outstanding open problem.</p>","PeriodicalId":51083,"journal":{"name":"Journal of Evolution Equations","volume":"43 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Another remark on the global regularity issue of the Hall-magnetohydrodynamics system\",\"authors\":\"Mohammad Mahabubur Rahman, Kazuo Yamazaki\",\"doi\":\"10.1007/s00028-024-01000-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We discover new cancellations upon <span>\\\\(H^{2}(\\\\mathbb {R}^{n})\\\\)</span>-estimate of the Hall term, <span>\\\\(n \\\\in \\\\{2,3\\\\}\\\\)</span>. Consequently, first, we derive a regularity criterion for the 3-dimensional Hall-magnetohydrodynamics system in terms of horizontal components of velocity and magnetic fields. Second, we are able to prove the global regularity of the <span>\\\\(2\\\\frac{1}{2}\\\\)</span>-dimensional electron magnetohydrodynamics system with magnetic diffusion <span>\\\\((-\\\\Delta )^{\\\\frac{3}{2}} (b_{1}, b_{2}, 0) + (-\\\\Delta )^{\\\\alpha } (0, 0, b_{3})\\\\)</span> for <span>\\\\(\\\\alpha &gt; \\\\frac{1}{2}\\\\)</span> despite the fact that <span>\\\\((-\\\\Delta )^{\\\\frac{3}{2}}\\\\)</span> is the critical diffusive strength. Lastly, we extend this result to the <span>\\\\(2\\\\frac{1}{2}\\\\)</span>-dimensional Hall-magnetohydrodynamics system with <span>\\\\(-\\\\Delta u\\\\)</span> replaced by <span>\\\\((-\\\\Delta )^{\\\\alpha } (u_{1}, u_{2}, 0) -\\\\Delta (0, 0, u_{3})\\\\)</span> for <span>\\\\(\\\\alpha &gt; \\\\frac{1}{2}\\\\)</span>. The sum of the derivatives in diffusion that our result requires is <span>\\\\(11+ \\\\epsilon \\\\)</span> for any <span>\\\\(\\\\epsilon &gt; 0\\\\)</span>, while the sum for the classical <span>\\\\(2\\\\frac{1}{2}\\\\)</span>-dimensional Hall-magnetohydrodynamics system is 12 considering <span>\\\\(-\\\\Delta u\\\\)</span> and <span>\\\\(-\\\\Delta b\\\\)</span>, of which its global regularity issue remains an outstanding open problem.</p>\",\"PeriodicalId\":51083,\"journal\":{\"name\":\"Journal of Evolution Equations\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Evolution Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00028-024-01000-6\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Evolution Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00028-024-01000-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们发现了霍尔项的 \(H^{2}(\mathbb {R}^{n})\) -估计值的新抵消,(n \ in \{2,3\}\)。因此,首先,我们从速度和磁场的水平分量方面推导出三维霍尔-磁流体力学系统的正则性准则。其次,我们能够证明具有磁扩散的 \(2\frac{1}{2}\)- 维电子磁流体动力学系统的全局正则性((-\Delta )^{\frac{3}{2}})。(b_{1}, b_{2}, 0) + (-\Delta )^{\alpha }(0, 0, b_{3})\) for \(\alpha > \frac{1}{2}\) 尽管事实上 \((-\Delta )^{frac{3}{2}}\) 是临界扩散强度。最后,我们将这一结果扩展到霍尔磁流体力学系统,用 \((-\Delta )^{\alpha } 代替 \(2\frac{1}{2}\) -dimensional Hall-magnetohydrodynamics system。(u_{1}, u_{2}, 0) -\Delta (0, 0, u_{3})\) for \(\alpha > \frac{1}{2}\)。对于任意的\(\epsilon > 0\) ,我们的结果所要求的扩散导数总和是\(11+ \epsilon \),而对于经典的\(2\frac{1}{2}\)-维霍尔磁流体力学系统,考虑到\(-\Delta u\) 和\(-\Delta b\) ,其全局正则性问题仍然是一个悬而未决的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Another remark on the global regularity issue of the Hall-magnetohydrodynamics system

We discover new cancellations upon \(H^{2}(\mathbb {R}^{n})\)-estimate of the Hall term, \(n \in \{2,3\}\). Consequently, first, we derive a regularity criterion for the 3-dimensional Hall-magnetohydrodynamics system in terms of horizontal components of velocity and magnetic fields. Second, we are able to prove the global regularity of the \(2\frac{1}{2}\)-dimensional electron magnetohydrodynamics system with magnetic diffusion \((-\Delta )^{\frac{3}{2}} (b_{1}, b_{2}, 0) + (-\Delta )^{\alpha } (0, 0, b_{3})\) for \(\alpha > \frac{1}{2}\) despite the fact that \((-\Delta )^{\frac{3}{2}}\) is the critical diffusive strength. Lastly, we extend this result to the \(2\frac{1}{2}\)-dimensional Hall-magnetohydrodynamics system with \(-\Delta u\) replaced by \((-\Delta )^{\alpha } (u_{1}, u_{2}, 0) -\Delta (0, 0, u_{3})\) for \(\alpha > \frac{1}{2}\). The sum of the derivatives in diffusion that our result requires is \(11+ \epsilon \) for any \(\epsilon > 0\), while the sum for the classical \(2\frac{1}{2}\)-dimensional Hall-magnetohydrodynamics system is 12 considering \(-\Delta u\) and \(-\Delta b\), of which its global regularity issue remains an outstanding open problem.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
7.10%
发文量
90
审稿时长
>12 weeks
期刊介绍: The Journal of Evolution Equations (JEE) publishes high-quality, peer-reviewed papers on equations dealing with time dependent systems and ranging from abstract theory to concrete applications. Research articles should contain new and important results. Survey articles on recent developments are also considered as important contributions to the field. Particular topics covered by the journal are: Linear and Nonlinear Semigroups Parabolic and Hyperbolic Partial Differential Equations Reaction Diffusion Equations Deterministic and Stochastic Control Systems Transport and Population Equations Volterra Equations Delay Equations Stochastic Processes and Dirichlet Forms Maximal Regularity and Functional Calculi Asymptotics and Qualitative Theory of Linear and Nonlinear Evolution Equations Evolution Equations in Mathematical Physics Elliptic Operators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信