具有混合约束条件的离散最优控制问题的弱最大原则

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Roberto Andreani, John Frank Matos Ascona, Valeriano Antunes de Oliveira
{"title":"具有混合约束条件的离散最优控制问题的弱最大原则","authors":"Roberto Andreani, John Frank Matos Ascona, Valeriano Antunes de Oliveira","doi":"10.1007/s10957-024-02524-0","DOIUrl":null,"url":null,"abstract":"<p>In this study, first-order necessary optimality conditions, in the form of a weak maximum principle, are derived for discrete optimal control problems with mixed equality and inequality constraints. Such conditions are achieved by using the Dubovitskii–Milyutin formalism approach. Nondegenerate conditions are obtained under the constant rank of the subspace component (CRSC) constraint qualification, which is an important generalization of both the Mangasarian–Fromovitz and constant rank constraint qualifications. Beyond its theoretical significance, CRSC has practical importance because it is closely related to the formulation of optimization algorithms. In addition, an instance of a discrete optimal control problem is presented in which CRSC holds while other stronger regularity conditions do not.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Weak Maximum Principle for Discrete Optimal Control Problems with Mixed Constraints\",\"authors\":\"Roberto Andreani, John Frank Matos Ascona, Valeriano Antunes de Oliveira\",\"doi\":\"10.1007/s10957-024-02524-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this study, first-order necessary optimality conditions, in the form of a weak maximum principle, are derived for discrete optimal control problems with mixed equality and inequality constraints. Such conditions are achieved by using the Dubovitskii–Milyutin formalism approach. Nondegenerate conditions are obtained under the constant rank of the subspace component (CRSC) constraint qualification, which is an important generalization of both the Mangasarian–Fromovitz and constant rank constraint qualifications. Beyond its theoretical significance, CRSC has practical importance because it is closely related to the formulation of optimization algorithms. In addition, an instance of a discrete optimal control problem is presented in which CRSC holds while other stronger regularity conditions do not.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10957-024-02524-0\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10957-024-02524-0","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究以弱最大原则的形式,为具有混合相等和不等式约束的离散最优控制问题导出了一阶必要最优性条件。这些条件是通过使用 Dubovitskii-Milyutin 形式主义方法实现的。在子空间分量恒定秩(CRSC)约束条件下得到了非enerate 条件,这是对 Mangasarian-Fromovitz 和恒定秩约束条件的重要概括。除了理论意义之外,CRSC 还具有实际意义,因为它与优化算法的制定密切相关。此外,本文还提出了一个离散最优控制问题的实例,在该实例中,CRSC 成立,而其他更强的正则条件不成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Weak Maximum Principle for Discrete Optimal Control Problems with Mixed Constraints

In this study, first-order necessary optimality conditions, in the form of a weak maximum principle, are derived for discrete optimal control problems with mixed equality and inequality constraints. Such conditions are achieved by using the Dubovitskii–Milyutin formalism approach. Nondegenerate conditions are obtained under the constant rank of the subspace component (CRSC) constraint qualification, which is an important generalization of both the Mangasarian–Fromovitz and constant rank constraint qualifications. Beyond its theoretical significance, CRSC has practical importance because it is closely related to the formulation of optimization algorithms. In addition, an instance of a discrete optimal control problem is presented in which CRSC holds while other stronger regularity conditions do not.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信