通过残差序列实现阶数 $$1<\alpha <2$$ 的抽象离散分式系统的近似可控性

IF 1.6 3区 数学 Q2 MATHEMATICS, APPLIED
Rodrigo Ponce
{"title":"通过残差序列实现阶数 $$1<\\alpha <2$$ 的抽象离散分式系统的近似可控性","authors":"Rodrigo Ponce","doi":"10.1007/s10957-024-02516-0","DOIUrl":null,"url":null,"abstract":"<p>We study the approximate controllability of the discrete fractional systems of order <span>\\(1&lt;\\alpha &lt;2\\)</span></p><span>$$\\begin{aligned} (*)\\quad \\,_C\\nabla ^{\\alpha } u^n=Au^n+Bv^n+f(n,u^n), \\quad n\\ge 2, \\end{aligned}$$</span><p>subject to the initial states <span>\\(u^0=x_0,u^1=x_1,\\)</span> where <i>A</i> is a closed linear operator defined in a Hilbert space <i>X</i>, <i>B</i> is a bounded linear operator from a Hilbert space <i>U</i> into <span>\\(X, f:{\\mathbb {N}}_0\\times X\\rightarrow X\\)</span> is a given sequence and <span>\\(\\,_C\\nabla ^{\\alpha } u^n\\)</span> is an approximation of the Caputo fractional derivative <span>\\(\\partial ^\\alpha _t\\)</span> of <i>u</i> at <span>\\(t_n:=\\tau n,\\)</span> where <span>\\(\\tau &gt;0\\)</span> is a given step size. To do this, we first study resolvent sequences <span>\\(\\{S_{\\alpha ,\\beta }^n\\}_{n\\in {\\mathbb {N}}_0}\\)</span> generated by closed linear operators to obtain some subordination results. In addition, we discuss the existence of solutions to <span>\\((*)\\)</span> and next, we study the existence of optimal controls to obtain the approximate controllability of the discrete fractional system <span>\\((*)\\)</span> in terms of the resolvent sequence <span>\\(\\{S_{\\alpha ,\\beta }^n\\}_{n\\in {\\mathbb {N}}_0}\\)</span> for some <span>\\(\\alpha ,\\beta &gt;0.\\)</span> Finally, we provide an example to illustrate our results.</p>","PeriodicalId":50100,"journal":{"name":"Journal of Optimization Theory and Applications","volume":"9 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximate Controllability of Abstract Discrete Fractional Systems of Order $$1<\\\\alpha <2$$ via Resolvent Sequences\",\"authors\":\"Rodrigo Ponce\",\"doi\":\"10.1007/s10957-024-02516-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the approximate controllability of the discrete fractional systems of order <span>\\\\(1&lt;\\\\alpha &lt;2\\\\)</span></p><span>$$\\\\begin{aligned} (*)\\\\quad \\\\,_C\\\\nabla ^{\\\\alpha } u^n=Au^n+Bv^n+f(n,u^n), \\\\quad n\\\\ge 2, \\\\end{aligned}$$</span><p>subject to the initial states <span>\\\\(u^0=x_0,u^1=x_1,\\\\)</span> where <i>A</i> is a closed linear operator defined in a Hilbert space <i>X</i>, <i>B</i> is a bounded linear operator from a Hilbert space <i>U</i> into <span>\\\\(X, f:{\\\\mathbb {N}}_0\\\\times X\\\\rightarrow X\\\\)</span> is a given sequence and <span>\\\\(\\\\,_C\\\\nabla ^{\\\\alpha } u^n\\\\)</span> is an approximation of the Caputo fractional derivative <span>\\\\(\\\\partial ^\\\\alpha _t\\\\)</span> of <i>u</i> at <span>\\\\(t_n:=\\\\tau n,\\\\)</span> where <span>\\\\(\\\\tau &gt;0\\\\)</span> is a given step size. To do this, we first study resolvent sequences <span>\\\\(\\\\{S_{\\\\alpha ,\\\\beta }^n\\\\}_{n\\\\in {\\\\mathbb {N}}_0}\\\\)</span> generated by closed linear operators to obtain some subordination results. In addition, we discuss the existence of solutions to <span>\\\\((*)\\\\)</span> and next, we study the existence of optimal controls to obtain the approximate controllability of the discrete fractional system <span>\\\\((*)\\\\)</span> in terms of the resolvent sequence <span>\\\\(\\\\{S_{\\\\alpha ,\\\\beta }^n\\\\}_{n\\\\in {\\\\mathbb {N}}_0}\\\\)</span> for some <span>\\\\(\\\\alpha ,\\\\beta &gt;0.\\\\)</span> Finally, we provide an example to illustrate our results.</p>\",\"PeriodicalId\":50100,\"journal\":{\"name\":\"Journal of Optimization Theory and Applications\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Optimization Theory and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10957-024-02516-0\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optimization Theory and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10957-024-02516-0","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了阶 \(1<\alpha <;2)$$begin{aligned} (*)\quad \,_C\nabla ^{\alpha } u^n=Au^n+Bv^n+f(n,u^n), \quad n\ge 2, \end{aligned}$$服从于初始状态(u^0=x_0、u^1=x_1,),其中 A 是定义在希尔伯特空间 X 中的封闭线性算子,B 是从希尔伯特空间 U 到 \(X,f.)的有界线性算子:{是一个给定的序列,(\,_C\nabla ^{\alpha } u^n\)是u在\(t_n:=\tau n,\)时的Caputo分数导数\(\partial ^\alpha _t\)的近似值,其中\(\tau >0\)是给定的步长。为此,我们首先研究由封闭线性算子产生的解析序列((\{S_{alpha ,\beta }^n\}_{n\in {\mathbb {N}}_0}\ ),从而得到一些从属性结果。此外,我们讨论了 \((*)\) 的解的存在性,接下来,我们研究了最优控制的存在性,从而得到了离散分式系统 \((*)\) 的近似可控性,即对于某个 \(\alpha ,\beta >0.0.0.0, \(\S_{S\{alpha ,\beta }^n\}_{n\in {\mathbb {N}}_0}\) 的解析序列 \(\{S_{S\{alpha ,\beta }^n\}_{n\in {\mathbb {N}}_0}}.\最后,我们举一个例子来说明我们的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approximate Controllability of Abstract Discrete Fractional Systems of Order $$1<\alpha <2$$ via Resolvent Sequences

We study the approximate controllability of the discrete fractional systems of order \(1<\alpha <2\)

$$\begin{aligned} (*)\quad \,_C\nabla ^{\alpha } u^n=Au^n+Bv^n+f(n,u^n), \quad n\ge 2, \end{aligned}$$

subject to the initial states \(u^0=x_0,u^1=x_1,\) where A is a closed linear operator defined in a Hilbert space X, B is a bounded linear operator from a Hilbert space U into \(X, f:{\mathbb {N}}_0\times X\rightarrow X\) is a given sequence and \(\,_C\nabla ^{\alpha } u^n\) is an approximation of the Caputo fractional derivative \(\partial ^\alpha _t\) of u at \(t_n:=\tau n,\) where \(\tau >0\) is a given step size. To do this, we first study resolvent sequences \(\{S_{\alpha ,\beta }^n\}_{n\in {\mathbb {N}}_0}\) generated by closed linear operators to obtain some subordination results. In addition, we discuss the existence of solutions to \((*)\) and next, we study the existence of optimal controls to obtain the approximate controllability of the discrete fractional system \((*)\) in terms of the resolvent sequence \(\{S_{\alpha ,\beta }^n\}_{n\in {\mathbb {N}}_0}\) for some \(\alpha ,\beta >0.\) Finally, we provide an example to illustrate our results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
5.30%
发文量
149
审稿时长
9.9 months
期刊介绍: The Journal of Optimization Theory and Applications is devoted to the publication of carefully selected regular papers, invited papers, survey papers, technical notes, book notices, and forums that cover mathematical optimization techniques and their applications to science and engineering. Typical theoretical areas include linear, nonlinear, mathematical, and dynamic programming. Among the areas of application covered are mathematical economics, mathematical physics and biology, and aerospace, chemical, civil, electrical, and mechanical engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信