Z,N=50 至 82 外壳中多达 18 个排列整齐的粒子(和空穴)的带终端和最大自旋值

IF 3.1 2区 物理与天体物理 Q1 Physics and Astronomy
I. Ragnarsson, A. Kardan, B. G. Carlsson, E. S. Paul, C. M. Petrache, M. A. Riley, J. F. Sharpey-Schafer, J. Simpson
{"title":"Z,N=50 至 82 外壳中多达 18 个排列整齐的粒子(和空穴)的带终端和最大自旋值","authors":"I. Ragnarsson, A. Kardan, B. G. Carlsson, E. S. Paul, C. M. Petrache, M. A. Riley, J. F. Sharpey-Schafer, J. Simpson","doi":"10.1103/physrevc.110.034313","DOIUrl":null,"url":null,"abstract":"Observed rotational bands that terminate or appear to terminate at very high spin are analyzed within the configuration constrained cranked Nilsson-Strutinsky (unpaired CNS or CNSB with pairing) formalism. Spin values for the nuclei discussed reach or come close to the maximum spin that can be built within the <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>Z</mi><mo>,</mo><mi>N</mi><mo>=</mo><mn>50</mn><mo>–</mo><mn>82</mn></mrow></math> shells. Configurations are distinguished not only by the number of particles in high-<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>j</mi></math> and low-<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>j</mi></math> shells within each <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi mathvariant=\"script\">N</mi></math> shell but, in some cases, also by the number of particles in pseudospin partners like <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mi>d</mi><mrow><mn>5</mn><mo>/</mo><mn>2</mn></mrow></msub><msub><mi>g</mi><mrow><mn>7</mn><mo>/</mo><mn>2</mn></mrow></msub></mrow></math> and <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mi>s</mi><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msub><msub><mi>d</mi><mrow><mn>3</mn><mo>/</mo><mn>2</mn></mrow></msub></mrow></math>. Configurations in <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mmultiscripts><mi>Dy</mi><mprescripts></mprescripts><none></none><mn>156</mn></mmultiscripts></math> and <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mmultiscripts><mi>Hf</mi><mprescripts></mprescripts><none></none><mn>164</mn></mmultiscripts></math>, which terminate at <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>I</mi><mo>≈</mo><mn>60</mn></mrow></math>, are well understood in terms of their occupation of open <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>j</mi></math> shells or groups of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>j</mi></math> shells. The bands in <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mmultiscripts><mi>Dy</mi><mprescripts></mprescripts><none></none><mn>156</mn></mmultiscripts></math> are tentatively observed up to termination while the bands in <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mmultiscripts><mi>Hf</mi><mprescripts></mprescripts><none></none><mn>164</mn></mmultiscripts></math> are still a few spin units away. These terminating states are built with up to 18 aligned particles or 18 <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mtext>particles</mtext><mo>+</mo><mtext>holes</mtext></math> outside a core. The core is built from nucleons in filled <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>j</mi></math> shells, which gives no contribution to the spin. Analysis of the high-spin bands in <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mmultiscripts><mi>Xe</mi><mprescripts></mprescripts><none></none><mrow><mn>125</mn><mo>,</mo><mn>126</mn></mrow></mmultiscripts></math> and <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mmultiscripts><mi>Ce</mi><mprescripts></mprescripts><none></none><mrow><mn>131</mn><mo>,</mo><mn>132</mn></mrow></mmultiscripts></math> suggests that bands in <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mmultiscripts><mi>Xe</mi><mprescripts></mprescripts><none></none><mn>126</mn></mmultiscripts></math> and <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mmultiscripts><mi>Ce</mi><mprescripts></mprescripts><none></none><mn>132</mn></mmultiscripts></math> are observed to terminate at similar spin values, where terminating bands in <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mmultiscripts><mi>Xe</mi><mprescripts></mprescripts><none></none><mn>126</mn></mmultiscripts></math> are observed high above yrast. It is remarkable that the deformed mean field, plus single-particle configurations, is able to provide such a comprehensive description of known experimental levels in nuclei up to spin <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>60</mn><mi>ℏ</mi></mrow></math> and beyond. It is also impressive that the model can relate alignments of single-particle spin vectors to changes in shape with the nuclear spin.","PeriodicalId":20122,"journal":{"name":"Physical Review C","volume":"13 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Band terminations and maximum spin values with up to 18 aligned particles (and holes) in the Z,N=50 to 82 shells\",\"authors\":\"I. Ragnarsson, A. Kardan, B. G. Carlsson, E. S. Paul, C. M. Petrache, M. A. Riley, J. F. Sharpey-Schafer, J. Simpson\",\"doi\":\"10.1103/physrevc.110.034313\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Observed rotational bands that terminate or appear to terminate at very high spin are analyzed within the configuration constrained cranked Nilsson-Strutinsky (unpaired CNS or CNSB with pairing) formalism. Spin values for the nuclei discussed reach or come close to the maximum spin that can be built within the <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>Z</mi><mo>,</mo><mi>N</mi><mo>=</mo><mn>50</mn><mo>–</mo><mn>82</mn></mrow></math> shells. Configurations are distinguished not only by the number of particles in high-<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>j</mi></math> and low-<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>j</mi></math> shells within each <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi mathvariant=\\\"script\\\">N</mi></math> shell but, in some cases, also by the number of particles in pseudospin partners like <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><msub><mi>d</mi><mrow><mn>5</mn><mo>/</mo><mn>2</mn></mrow></msub><msub><mi>g</mi><mrow><mn>7</mn><mo>/</mo><mn>2</mn></mrow></msub></mrow></math> and <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><msub><mi>s</mi><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msub><msub><mi>d</mi><mrow><mn>3</mn><mo>/</mo><mn>2</mn></mrow></msub></mrow></math>. Configurations in <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mmultiscripts><mi>Dy</mi><mprescripts></mprescripts><none></none><mn>156</mn></mmultiscripts></math> and <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mmultiscripts><mi>Hf</mi><mprescripts></mprescripts><none></none><mn>164</mn></mmultiscripts></math>, which terminate at <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>I</mi><mo>≈</mo><mn>60</mn></mrow></math>, are well understood in terms of their occupation of open <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>j</mi></math> shells or groups of <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>j</mi></math> shells. The bands in <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mmultiscripts><mi>Dy</mi><mprescripts></mprescripts><none></none><mn>156</mn></mmultiscripts></math> are tentatively observed up to termination while the bands in <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mmultiscripts><mi>Hf</mi><mprescripts></mprescripts><none></none><mn>164</mn></mmultiscripts></math> are still a few spin units away. These terminating states are built with up to 18 aligned particles or 18 <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mtext>particles</mtext><mo>+</mo><mtext>holes</mtext></math> outside a core. The core is built from nucleons in filled <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>j</mi></math> shells, which gives no contribution to the spin. Analysis of the high-spin bands in <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mmultiscripts><mi>Xe</mi><mprescripts></mprescripts><none></none><mrow><mn>125</mn><mo>,</mo><mn>126</mn></mrow></mmultiscripts></math> and <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mmultiscripts><mi>Ce</mi><mprescripts></mprescripts><none></none><mrow><mn>131</mn><mo>,</mo><mn>132</mn></mrow></mmultiscripts></math> suggests that bands in <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mmultiscripts><mi>Xe</mi><mprescripts></mprescripts><none></none><mn>126</mn></mmultiscripts></math> and <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mmultiscripts><mi>Ce</mi><mprescripts></mprescripts><none></none><mn>132</mn></mmultiscripts></math> are observed to terminate at similar spin values, where terminating bands in <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mmultiscripts><mi>Xe</mi><mprescripts></mprescripts><none></none><mn>126</mn></mmultiscripts></math> are observed high above yrast. It is remarkable that the deformed mean field, plus single-particle configurations, is able to provide such a comprehensive description of known experimental levels in nuclei up to spin <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mn>60</mn><mi>ℏ</mi></mrow></math> and beyond. It is also impressive that the model can relate alignments of single-particle spin vectors to changes in shape with the nuclear spin.\",\"PeriodicalId\":20122,\"journal\":{\"name\":\"Physical Review C\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review C\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevc.110.034313\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review C","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevc.110.034313","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

在构型约束曲柄尼尔森-斯特鲁廷斯基(非配对 CNS 或配对 CNSB)形式主义中分析了在极高自旋下终止或似乎终止的观测旋转带。所讨论的原子核的自旋值达到或接近可以在 Z,N=50-82 壳内建立的最大自旋。配置不仅根据每个 N 壳内高 j 壳和低 j 壳的粒子数量来区分,而且在某些情况下,还根据 d5/2g7/2 和 s1/2d3/2 等伪自旋伙伴的粒子数量来区分。Dy156 和 Hf164 的构型终止于 I≈60,从它们占据开放的 j 壳或 j 壳组的角度来看,可以很好地理解它们。Dy156 中的条带可初步观测到终止态,而 Hf164 中的条带则还差几个自旋单位。这些终结态是由最多 18 个排列整齐的粒子或 18 个粒子+孔在核心外形成的。核心是由填满 j 壳的核子构成的,对自旋没有贡献。对 Xe125,126 和 Ce131,132 中的高自旋带的分析表明,在 Xe126 和 Ce132 中观察到的带终止于相似的自旋值,而在 Xe126 中观察到的终止带高于 yrast。令人瞩目的是,变形平均场加上单粒子构型能够如此全面地描述自旋高达 60ℏ及以上的原子核中的已知实验水平。同样令人印象深刻的是,该模型能够将单粒子自旋矢量的排列与核自旋的形状变化联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Band terminations and maximum spin values with up to 18 aligned particles (and holes) in the Z,N=50 to 82 shells

Band terminations and maximum spin values with up to 18 aligned particles (and holes) in the Z,N=50 to 82 shells
Observed rotational bands that terminate or appear to terminate at very high spin are analyzed within the configuration constrained cranked Nilsson-Strutinsky (unpaired CNS or CNSB with pairing) formalism. Spin values for the nuclei discussed reach or come close to the maximum spin that can be built within the Z,N=5082 shells. Configurations are distinguished not only by the number of particles in high-j and low-j shells within each N shell but, in some cases, also by the number of particles in pseudospin partners like d5/2g7/2 and s1/2d3/2. Configurations in Dy156 and Hf164, which terminate at I60, are well understood in terms of their occupation of open j shells or groups of j shells. The bands in Dy156 are tentatively observed up to termination while the bands in Hf164 are still a few spin units away. These terminating states are built with up to 18 aligned particles or 18 particles+holes outside a core. The core is built from nucleons in filled j shells, which gives no contribution to the spin. Analysis of the high-spin bands in Xe125,126 and Ce131,132 suggests that bands in Xe126 and Ce132 are observed to terminate at similar spin values, where terminating bands in Xe126 are observed high above yrast. It is remarkable that the deformed mean field, plus single-particle configurations, is able to provide such a comprehensive description of known experimental levels in nuclei up to spin 60 and beyond. It is also impressive that the model can relate alignments of single-particle spin vectors to changes in shape with the nuclear spin.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review C
Physical Review C 物理-物理:核物理
CiteScore
5.70
自引率
35.50%
发文量
0
审稿时长
1-2 weeks
期刊介绍: Physical Review C (PRC) is a leading journal in theoretical and experimental nuclear physics, publishing more than two-thirds of the research literature in the field. PRC covers experimental and theoretical results in all aspects of nuclear physics, including: Nucleon-nucleon interaction, few-body systems Nuclear structure Nuclear reactions Relativistic nuclear collisions Hadronic physics and QCD Electroweak interaction, symmetries Nuclear astrophysics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信