I. Ragnarsson, A. Kardan, B. G. Carlsson, E. S. Paul, C. M. Petrache, M. A. Riley, J. F. Sharpey-Schafer, J. Simpson
{"title":"Z,N=50 至 82 外壳中多达 18 个排列整齐的粒子(和空穴)的带终端和最大自旋值","authors":"I. Ragnarsson, A. Kardan, B. G. Carlsson, E. S. Paul, C. M. Petrache, M. A. Riley, J. F. Sharpey-Schafer, J. Simpson","doi":"10.1103/physrevc.110.034313","DOIUrl":null,"url":null,"abstract":"Observed rotational bands that terminate or appear to terminate at very high spin are analyzed within the configuration constrained cranked Nilsson-Strutinsky (unpaired CNS or CNSB with pairing) formalism. Spin values for the nuclei discussed reach or come close to the maximum spin that can be built within the <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>Z</mi><mo>,</mo><mi>N</mi><mo>=</mo><mn>50</mn><mo>–</mo><mn>82</mn></mrow></math> shells. Configurations are distinguished not only by the number of particles in high-<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>j</mi></math> and low-<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>j</mi></math> shells within each <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi mathvariant=\"script\">N</mi></math> shell but, in some cases, also by the number of particles in pseudospin partners like <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mi>d</mi><mrow><mn>5</mn><mo>/</mo><mn>2</mn></mrow></msub><msub><mi>g</mi><mrow><mn>7</mn><mo>/</mo><mn>2</mn></mrow></msub></mrow></math> and <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mi>s</mi><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msub><msub><mi>d</mi><mrow><mn>3</mn><mo>/</mo><mn>2</mn></mrow></msub></mrow></math>. Configurations in <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mmultiscripts><mi>Dy</mi><mprescripts></mprescripts><none></none><mn>156</mn></mmultiscripts></math> and <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mmultiscripts><mi>Hf</mi><mprescripts></mprescripts><none></none><mn>164</mn></mmultiscripts></math>, which terminate at <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>I</mi><mo>≈</mo><mn>60</mn></mrow></math>, are well understood in terms of their occupation of open <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>j</mi></math> shells or groups of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>j</mi></math> shells. The bands in <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mmultiscripts><mi>Dy</mi><mprescripts></mprescripts><none></none><mn>156</mn></mmultiscripts></math> are tentatively observed up to termination while the bands in <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mmultiscripts><mi>Hf</mi><mprescripts></mprescripts><none></none><mn>164</mn></mmultiscripts></math> are still a few spin units away. These terminating states are built with up to 18 aligned particles or 18 <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mtext>particles</mtext><mo>+</mo><mtext>holes</mtext></math> outside a core. The core is built from nucleons in filled <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>j</mi></math> shells, which gives no contribution to the spin. Analysis of the high-spin bands in <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mmultiscripts><mi>Xe</mi><mprescripts></mprescripts><none></none><mrow><mn>125</mn><mo>,</mo><mn>126</mn></mrow></mmultiscripts></math> and <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mmultiscripts><mi>Ce</mi><mprescripts></mprescripts><none></none><mrow><mn>131</mn><mo>,</mo><mn>132</mn></mrow></mmultiscripts></math> suggests that bands in <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mmultiscripts><mi>Xe</mi><mprescripts></mprescripts><none></none><mn>126</mn></mmultiscripts></math> and <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mmultiscripts><mi>Ce</mi><mprescripts></mprescripts><none></none><mn>132</mn></mmultiscripts></math> are observed to terminate at similar spin values, where terminating bands in <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mmultiscripts><mi>Xe</mi><mprescripts></mprescripts><none></none><mn>126</mn></mmultiscripts></math> are observed high above yrast. It is remarkable that the deformed mean field, plus single-particle configurations, is able to provide such a comprehensive description of known experimental levels in nuclei up to spin <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>60</mn><mi>ℏ</mi></mrow></math> and beyond. It is also impressive that the model can relate alignments of single-particle spin vectors to changes in shape with the nuclear spin.","PeriodicalId":20122,"journal":{"name":"Physical Review C","volume":"13 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Band terminations and maximum spin values with up to 18 aligned particles (and holes) in the Z,N=50 to 82 shells\",\"authors\":\"I. Ragnarsson, A. Kardan, B. G. Carlsson, E. S. Paul, C. M. Petrache, M. A. Riley, J. F. Sharpey-Schafer, J. Simpson\",\"doi\":\"10.1103/physrevc.110.034313\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Observed rotational bands that terminate or appear to terminate at very high spin are analyzed within the configuration constrained cranked Nilsson-Strutinsky (unpaired CNS or CNSB with pairing) formalism. Spin values for the nuclei discussed reach or come close to the maximum spin that can be built within the <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>Z</mi><mo>,</mo><mi>N</mi><mo>=</mo><mn>50</mn><mo>–</mo><mn>82</mn></mrow></math> shells. Configurations are distinguished not only by the number of particles in high-<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>j</mi></math> and low-<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>j</mi></math> shells within each <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi mathvariant=\\\"script\\\">N</mi></math> shell but, in some cases, also by the number of particles in pseudospin partners like <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><msub><mi>d</mi><mrow><mn>5</mn><mo>/</mo><mn>2</mn></mrow></msub><msub><mi>g</mi><mrow><mn>7</mn><mo>/</mo><mn>2</mn></mrow></msub></mrow></math> and <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><msub><mi>s</mi><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msub><msub><mi>d</mi><mrow><mn>3</mn><mo>/</mo><mn>2</mn></mrow></msub></mrow></math>. Configurations in <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mmultiscripts><mi>Dy</mi><mprescripts></mprescripts><none></none><mn>156</mn></mmultiscripts></math> and <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mmultiscripts><mi>Hf</mi><mprescripts></mprescripts><none></none><mn>164</mn></mmultiscripts></math>, which terminate at <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>I</mi><mo>≈</mo><mn>60</mn></mrow></math>, are well understood in terms of their occupation of open <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>j</mi></math> shells or groups of <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>j</mi></math> shells. The bands in <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mmultiscripts><mi>Dy</mi><mprescripts></mprescripts><none></none><mn>156</mn></mmultiscripts></math> are tentatively observed up to termination while the bands in <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mmultiscripts><mi>Hf</mi><mprescripts></mprescripts><none></none><mn>164</mn></mmultiscripts></math> are still a few spin units away. These terminating states are built with up to 18 aligned particles or 18 <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mtext>particles</mtext><mo>+</mo><mtext>holes</mtext></math> outside a core. The core is built from nucleons in filled <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>j</mi></math> shells, which gives no contribution to the spin. Analysis of the high-spin bands in <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mmultiscripts><mi>Xe</mi><mprescripts></mprescripts><none></none><mrow><mn>125</mn><mo>,</mo><mn>126</mn></mrow></mmultiscripts></math> and <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mmultiscripts><mi>Ce</mi><mprescripts></mprescripts><none></none><mrow><mn>131</mn><mo>,</mo><mn>132</mn></mrow></mmultiscripts></math> suggests that bands in <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mmultiscripts><mi>Xe</mi><mprescripts></mprescripts><none></none><mn>126</mn></mmultiscripts></math> and <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mmultiscripts><mi>Ce</mi><mprescripts></mprescripts><none></none><mn>132</mn></mmultiscripts></math> are observed to terminate at similar spin values, where terminating bands in <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mmultiscripts><mi>Xe</mi><mprescripts></mprescripts><none></none><mn>126</mn></mmultiscripts></math> are observed high above yrast. It is remarkable that the deformed mean field, plus single-particle configurations, is able to provide such a comprehensive description of known experimental levels in nuclei up to spin <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mn>60</mn><mi>ℏ</mi></mrow></math> and beyond. It is also impressive that the model can relate alignments of single-particle spin vectors to changes in shape with the nuclear spin.\",\"PeriodicalId\":20122,\"journal\":{\"name\":\"Physical Review C\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review C\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevc.110.034313\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review C","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevc.110.034313","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Band terminations and maximum spin values with up to 18 aligned particles (and holes) in the Z,N=50 to 82 shells
Observed rotational bands that terminate or appear to terminate at very high spin are analyzed within the configuration constrained cranked Nilsson-Strutinsky (unpaired CNS or CNSB with pairing) formalism. Spin values for the nuclei discussed reach or come close to the maximum spin that can be built within the shells. Configurations are distinguished not only by the number of particles in high- and low- shells within each shell but, in some cases, also by the number of particles in pseudospin partners like and . Configurations in and , which terminate at , are well understood in terms of their occupation of open shells or groups of shells. The bands in are tentatively observed up to termination while the bands in are still a few spin units away. These terminating states are built with up to 18 aligned particles or 18 outside a core. The core is built from nucleons in filled shells, which gives no contribution to the spin. Analysis of the high-spin bands in and suggests that bands in and are observed to terminate at similar spin values, where terminating bands in are observed high above yrast. It is remarkable that the deformed mean field, plus single-particle configurations, is able to provide such a comprehensive description of known experimental levels in nuclei up to spin and beyond. It is also impressive that the model can relate alignments of single-particle spin vectors to changes in shape with the nuclear spin.
期刊介绍:
Physical Review C (PRC) is a leading journal in theoretical and experimental nuclear physics, publishing more than two-thirds of the research literature in the field.
PRC covers experimental and theoretical results in all aspects of nuclear physics, including:
Nucleon-nucleon interaction, few-body systems
Nuclear structure
Nuclear reactions
Relativistic nuclear collisions
Hadronic physics and QCD
Electroweak interaction, symmetries
Nuclear astrophysics