{"title":"废物管理的革命性变革:利用碱激活炉渣固化垃圾填埋场渗滤液","authors":"Thandiwe Sithole, Lisakhanya Jobodwana, Felicia Magedi","doi":"10.1007/s11244-024-02006-7","DOIUrl":null,"url":null,"abstract":"<p>Landfill leachate is a highly hazardous effluent characterized by a high concentration of recalcitrant pollutants, presenting a significant environmental challenge. This study investigated the solidification of landfill leachate contaminants using sodium hydroxide-activated Granulated Blast Furnace Slag (GBFS). The stability of the resulting geopolymer was evaluated through unconfined compressive strength and leaching tests. Optimal curing conditions were identified as 7 days at a sodium hydroxide concentration of 12 M, achieving an unconfined compressive strength of 45.738 MPa at a liquid-to-solid ratio of 15%. A linear relationship was observed between the liquid-to-solid ratio and flow workability, with maximum flow workability evidenced by an average diameter of 242 mm at a liquid-to-solid ratio of 0.25. However, a minimum liquid-to-solid ratio of 0.15 was necessary to obtain a workable mortar. The produced geopolymers were characterized using X-ray Fluorescence (XRF) for mineralogical analysis, Scanning Electron Microscopy (SEM) for morphological examination, and the Toxicity Characteristic Leaching Procedure (TCLP) for leaching tests. The findings demonstrated the successful solidification of landfill leachate using GBFS geopolymer. The leachability tests revealed that the geopolymer did not release metals in concentrations exceeding the allowable limits set by the United States Environmental Protection Agency (USEPA), indicating effective encapsulation of the pollutants within the geopolymer matrix. Furthermore, the resultant geopolymer brick is eco-sustainable and can be classified as a green construction material.</p>","PeriodicalId":801,"journal":{"name":"Topics in Catalysis","volume":"67 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Revolutionizing Waste Management: Solidification of Landfill Leachates Using Alkali-Activated Slag\",\"authors\":\"Thandiwe Sithole, Lisakhanya Jobodwana, Felicia Magedi\",\"doi\":\"10.1007/s11244-024-02006-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Landfill leachate is a highly hazardous effluent characterized by a high concentration of recalcitrant pollutants, presenting a significant environmental challenge. This study investigated the solidification of landfill leachate contaminants using sodium hydroxide-activated Granulated Blast Furnace Slag (GBFS). The stability of the resulting geopolymer was evaluated through unconfined compressive strength and leaching tests. Optimal curing conditions were identified as 7 days at a sodium hydroxide concentration of 12 M, achieving an unconfined compressive strength of 45.738 MPa at a liquid-to-solid ratio of 15%. A linear relationship was observed between the liquid-to-solid ratio and flow workability, with maximum flow workability evidenced by an average diameter of 242 mm at a liquid-to-solid ratio of 0.25. However, a minimum liquid-to-solid ratio of 0.15 was necessary to obtain a workable mortar. The produced geopolymers were characterized using X-ray Fluorescence (XRF) for mineralogical analysis, Scanning Electron Microscopy (SEM) for morphological examination, and the Toxicity Characteristic Leaching Procedure (TCLP) for leaching tests. The findings demonstrated the successful solidification of landfill leachate using GBFS geopolymer. The leachability tests revealed that the geopolymer did not release metals in concentrations exceeding the allowable limits set by the United States Environmental Protection Agency (USEPA), indicating effective encapsulation of the pollutants within the geopolymer matrix. Furthermore, the resultant geopolymer brick is eco-sustainable and can be classified as a green construction material.</p>\",\"PeriodicalId\":801,\"journal\":{\"name\":\"Topics in Catalysis\",\"volume\":\"67 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topics in Catalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s11244-024-02006-7\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topics in Catalysis","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11244-024-02006-7","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
垃圾填埋场渗滤液是一种高度危险的废水,其特点是含有高浓度的难降解污染物,给环境带来了巨大挑战。本研究调查了使用氢氧化钠活化粒状高炉矿渣(GBFS)固化垃圾填埋场渗滤液污染物的情况。通过无侧限抗压强度和浸出试验,对所得土工聚合物的稳定性进行了评估。最佳固化条件是在氢氧化钠浓度为 12 M 时固化 7 天,在液固比为 15% 时达到 45.738 MPa 的无约束抗压强度。液固比与流动作业性之间呈线性关系,液固比为 0.25 时,平均直径为 242 毫米,流动作业性最大。然而,要获得可加工的砂浆,最低液固比必须达到 0.15。利用 X 射线荧光(XRF)进行矿物分析,扫描电子显微镜(SEM)进行形态检查,以及毒性特征浸出程序(TCLP)进行浸出测试,对生产的土工聚合物进行了表征。研究结果表明,使用 GBFS 土工聚合物成功地固化了垃圾填埋场渗滤液。浸出性测试表明,土工聚合物释放的金属浓度没有超过美国环境保护局(USEPA)规定的允许限值,这表明污染物在土工聚合物基质中得到了有效的封装。此外,这种土工聚合物砖具有生态可持续性,可被归类为绿色建筑材料。
Revolutionizing Waste Management: Solidification of Landfill Leachates Using Alkali-Activated Slag
Landfill leachate is a highly hazardous effluent characterized by a high concentration of recalcitrant pollutants, presenting a significant environmental challenge. This study investigated the solidification of landfill leachate contaminants using sodium hydroxide-activated Granulated Blast Furnace Slag (GBFS). The stability of the resulting geopolymer was evaluated through unconfined compressive strength and leaching tests. Optimal curing conditions were identified as 7 days at a sodium hydroxide concentration of 12 M, achieving an unconfined compressive strength of 45.738 MPa at a liquid-to-solid ratio of 15%. A linear relationship was observed between the liquid-to-solid ratio and flow workability, with maximum flow workability evidenced by an average diameter of 242 mm at a liquid-to-solid ratio of 0.25. However, a minimum liquid-to-solid ratio of 0.15 was necessary to obtain a workable mortar. The produced geopolymers were characterized using X-ray Fluorescence (XRF) for mineralogical analysis, Scanning Electron Microscopy (SEM) for morphological examination, and the Toxicity Characteristic Leaching Procedure (TCLP) for leaching tests. The findings demonstrated the successful solidification of landfill leachate using GBFS geopolymer. The leachability tests revealed that the geopolymer did not release metals in concentrations exceeding the allowable limits set by the United States Environmental Protection Agency (USEPA), indicating effective encapsulation of the pollutants within the geopolymer matrix. Furthermore, the resultant geopolymer brick is eco-sustainable and can be classified as a green construction material.
期刊介绍:
Topics in Catalysis publishes topical collections in all fields of catalysis which are composed only of invited articles from leading authors. The journal documents today’s emerging and critical trends in all branches of catalysis. Each themed issue is organized by renowned Guest Editors in collaboration with the Editors-in-Chief. Proposals for new topics are welcome and should be submitted directly to the Editors-in-Chief.
The publication of individual uninvited original research articles can be sent to our sister journal Catalysis Letters. This journal aims for rapid publication of high-impact original research articles in all fields of both applied and theoretical catalysis, including heterogeneous, homogeneous and biocatalysis.