{"title":"通过卫星图像分类提高水文模型效率","authors":"Mehran Ghodrati, Alireza B. Dariane","doi":"10.1080/02626667.2024.2397543","DOIUrl":null,"url":null,"abstract":"This paper aims to evaluate the performance of a hydrological model by using satellite image classification (SIM) to extract Land Use (LU) information. Four methods, namely Naive Bayes (NB), Classi...","PeriodicalId":13036,"journal":{"name":"Hydrological Sciences Journal","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing hydrological model efficiency through satellite image classification\",\"authors\":\"Mehran Ghodrati, Alireza B. Dariane\",\"doi\":\"10.1080/02626667.2024.2397543\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper aims to evaluate the performance of a hydrological model by using satellite image classification (SIM) to extract Land Use (LU) information. Four methods, namely Naive Bayes (NB), Classi...\",\"PeriodicalId\":13036,\"journal\":{\"name\":\"Hydrological Sciences Journal\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hydrological Sciences Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/02626667.2024.2397543\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrological Sciences Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/02626667.2024.2397543","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Enhancing hydrological model efficiency through satellite image classification
This paper aims to evaluate the performance of a hydrological model by using satellite image classification (SIM) to extract Land Use (LU) information. Four methods, namely Naive Bayes (NB), Classi...