通过卫星图像分类提高水文模型效率

Mehran Ghodrati, Alireza B. Dariane
{"title":"通过卫星图像分类提高水文模型效率","authors":"Mehran Ghodrati, Alireza B. Dariane","doi":"10.1080/02626667.2024.2397543","DOIUrl":null,"url":null,"abstract":"This paper aims to evaluate the performance of a hydrological model by using satellite image classification (SIM) to extract Land Use (LU) information. Four methods, namely Naive Bayes (NB), Classi...","PeriodicalId":13036,"journal":{"name":"Hydrological Sciences Journal","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing hydrological model efficiency through satellite image classification\",\"authors\":\"Mehran Ghodrati, Alireza B. Dariane\",\"doi\":\"10.1080/02626667.2024.2397543\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper aims to evaluate the performance of a hydrological model by using satellite image classification (SIM) to extract Land Use (LU) information. Four methods, namely Naive Bayes (NB), Classi...\",\"PeriodicalId\":13036,\"journal\":{\"name\":\"Hydrological Sciences Journal\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hydrological Sciences Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/02626667.2024.2397543\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrological Sciences Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/02626667.2024.2397543","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在通过使用卫星图像分类(SIM)提取土地利用(LU)信息来评估水文模型的性能。四种方法,即 Naive Bayes (NB)、Classi...
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing hydrological model efficiency through satellite image classification
This paper aims to evaluate the performance of a hydrological model by using satellite image classification (SIM) to extract Land Use (LU) information. Four methods, namely Naive Bayes (NB), Classi...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信