跨分离矩阵绝热的捷径

Roi Holtzman, Oren Raz, Christopher Jarzynski
{"title":"跨分离矩阵绝热的捷径","authors":"Roi Holtzman, Oren Raz, Christopher Jarzynski","doi":"arxiv-2408.06916","DOIUrl":null,"url":null,"abstract":"Shortcuts to adiabaticity are strategies for conserving adiabatic invariants\nunder non-adiabatic (i.e. fast-driving) conditions. Here, we show how to extend\nclassical, Hamiltonian shortcuts to adiabaticity to allow the crossing of a\nphase-space separatrix -- a situation in which a corresponding adiabatic\nprotocol does not exist. Specifically, we show how to construct a\ntime-dependent Hamiltonian that evolves one energy shell to another energy\nshell across a separatrix. Leveraging this method, we design an erasure\nprocedure whose energy cost and fidelity do not depend on the protocol's\nduration.","PeriodicalId":501482,"journal":{"name":"arXiv - PHYS - Classical Physics","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shortcuts to adiabaticity across a separatrix\",\"authors\":\"Roi Holtzman, Oren Raz, Christopher Jarzynski\",\"doi\":\"arxiv-2408.06916\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Shortcuts to adiabaticity are strategies for conserving adiabatic invariants\\nunder non-adiabatic (i.e. fast-driving) conditions. Here, we show how to extend\\nclassical, Hamiltonian shortcuts to adiabaticity to allow the crossing of a\\nphase-space separatrix -- a situation in which a corresponding adiabatic\\nprotocol does not exist. Specifically, we show how to construct a\\ntime-dependent Hamiltonian that evolves one energy shell to another energy\\nshell across a separatrix. Leveraging this method, we design an erasure\\nprocedure whose energy cost and fidelity do not depend on the protocol's\\nduration.\",\"PeriodicalId\":501482,\"journal\":{\"name\":\"arXiv - PHYS - Classical Physics\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Classical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.06916\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Classical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.06916","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

绝热捷径是在非绝热(即快速驱动)条件下保持绝热不变性的策略。在这里,我们展示了如何扩展经典的哈密顿绝热捷径,以允许跨越相空间分离矩阵--在这种情况下,并不存在相应的绝热协议。具体来说,我们展示了如何构建与时间相关的哈密顿,使一个能量壳跨越分离矩阵演化为另一个能量壳。利用这种方法,我们设计了一种擦除程序,其能量成本和保真度不依赖于协议的持续时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Shortcuts to adiabaticity across a separatrix
Shortcuts to adiabaticity are strategies for conserving adiabatic invariants under non-adiabatic (i.e. fast-driving) conditions. Here, we show how to extend classical, Hamiltonian shortcuts to adiabaticity to allow the crossing of a phase-space separatrix -- a situation in which a corresponding adiabatic protocol does not exist. Specifically, we show how to construct a time-dependent Hamiltonian that evolves one energy shell to another energy shell across a separatrix. Leveraging this method, we design an erasure procedure whose energy cost and fidelity do not depend on the protocol's duration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信