{"title":"利用两种无偏差机器学习预测初创企业的成功:利用生成式对抗网络解决数据不平衡问题","authors":"Jungryeol Park, Saesol Choi, Yituo Feng","doi":"10.1186/s40537-024-00993-8","DOIUrl":null,"url":null,"abstract":"<p>The success of newly established companies holds significant implications for community development and economic growth. However, startups often grapple with heightened vulnerability to market volatility, which can lead to early-stage failures. This study aims to predict startup success by addressing biases in existing predictive models. Previous research has examined external factors such as market dynamics and internal elements like founder characteristics.While such efforts have contributed to understanding success mechanisms, challenges persist, including predictor and learning data biases. This study proposes a novel approach by constructing independent variables using early-stage information, incorporating founder attributes, and mitigating class imbalance through generative adversarial networks (GAN). Our proposed model aims to enhance investment decision-making efficiency and effectiveness, offering a valuable decision support system for various venture capital funds.</p>","PeriodicalId":15158,"journal":{"name":"Journal of Big Data","volume":"4 1","pages":""},"PeriodicalIF":8.6000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting startup success using two bias-free machine learning: resolving data imbalance using generative adversarial networks\",\"authors\":\"Jungryeol Park, Saesol Choi, Yituo Feng\",\"doi\":\"10.1186/s40537-024-00993-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The success of newly established companies holds significant implications for community development and economic growth. However, startups often grapple with heightened vulnerability to market volatility, which can lead to early-stage failures. This study aims to predict startup success by addressing biases in existing predictive models. Previous research has examined external factors such as market dynamics and internal elements like founder characteristics.While such efforts have contributed to understanding success mechanisms, challenges persist, including predictor and learning data biases. This study proposes a novel approach by constructing independent variables using early-stage information, incorporating founder attributes, and mitigating class imbalance through generative adversarial networks (GAN). Our proposed model aims to enhance investment decision-making efficiency and effectiveness, offering a valuable decision support system for various venture capital funds.</p>\",\"PeriodicalId\":15158,\"journal\":{\"name\":\"Journal of Big Data\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Big Data\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1186/s40537-024-00993-8\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Big Data","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1186/s40537-024-00993-8","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Predicting startup success using two bias-free machine learning: resolving data imbalance using generative adversarial networks
The success of newly established companies holds significant implications for community development and economic growth. However, startups often grapple with heightened vulnerability to market volatility, which can lead to early-stage failures. This study aims to predict startup success by addressing biases in existing predictive models. Previous research has examined external factors such as market dynamics and internal elements like founder characteristics.While such efforts have contributed to understanding success mechanisms, challenges persist, including predictor and learning data biases. This study proposes a novel approach by constructing independent variables using early-stage information, incorporating founder attributes, and mitigating class imbalance through generative adversarial networks (GAN). Our proposed model aims to enhance investment decision-making efficiency and effectiveness, offering a valuable decision support system for various venture capital funds.
期刊介绍:
The Journal of Big Data publishes high-quality, scholarly research papers, methodologies, and case studies covering a broad spectrum of topics, from big data analytics to data-intensive computing and all applications of big data research. It addresses challenges facing big data today and in the future, including data capture and storage, search, sharing, analytics, technologies, visualization, architectures, data mining, machine learning, cloud computing, distributed systems, and scalable storage. The journal serves as a seminal source of innovative material for academic researchers and practitioners alike.