在多样化 MEC 云网络中高效卸载微服务以优化成本

IF 8.6 2区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS
Abdul Rasheed Mahesar, Xiaoping Li, Dileep Kumar Sajnani
{"title":"在多样化 MEC 云网络中高效卸载微服务以优化成本","authors":"Abdul Rasheed Mahesar, Xiaoping Li, Dileep Kumar Sajnani","doi":"10.1186/s40537-024-00975-w","DOIUrl":null,"url":null,"abstract":"<p>In recent years, mobile applications have proliferated across domains such as E-banking, Augmented Reality, E-Transportation, and E-Healthcare. These applications are often built using microservices, an architectural style where the application is composed of independently deployable services focusing on specific functionalities. Mobile devices cannot process these microservices locally, so traditionally, cloud-based frameworks using cost-efficient Virtual Machines (VMs) and edge servers have been used to offload these tasks. However, cloud frameworks suffer from extended boot times and high transmission overhead, while edge servers have limited computational resources. To overcome these challenges, this study introduces a Microservices Container-Based Mobile Edge Cloud Computing (MCBMEC) environment and proposes an innovative framework, Optimization Task Scheduling and Computational Offloading with Cost Awareness (OTSCOCA). This framework addresses Resource Matching, Task Sequencing, and Task Scheduling to enhance server utilization, reduce service latency, and improve service bootup times. Empirical results validate the efficacy of MCBMEC and OTSCOCA, demonstrating significant improvements in server efficiency, reduced service latency, faster service bootup times, and notable cost savings. These outcomes underscore the pivotal role of these methodologies in advancing mobile edge computing applications amidst the challenges of edge server limitations and traditional cloud-based approaches.</p>","PeriodicalId":15158,"journal":{"name":"Journal of Big Data","volume":"1 1","pages":""},"PeriodicalIF":8.6000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient microservices offloading for cost optimization in diverse MEC cloud networks\",\"authors\":\"Abdul Rasheed Mahesar, Xiaoping Li, Dileep Kumar Sajnani\",\"doi\":\"10.1186/s40537-024-00975-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In recent years, mobile applications have proliferated across domains such as E-banking, Augmented Reality, E-Transportation, and E-Healthcare. These applications are often built using microservices, an architectural style where the application is composed of independently deployable services focusing on specific functionalities. Mobile devices cannot process these microservices locally, so traditionally, cloud-based frameworks using cost-efficient Virtual Machines (VMs) and edge servers have been used to offload these tasks. However, cloud frameworks suffer from extended boot times and high transmission overhead, while edge servers have limited computational resources. To overcome these challenges, this study introduces a Microservices Container-Based Mobile Edge Cloud Computing (MCBMEC) environment and proposes an innovative framework, Optimization Task Scheduling and Computational Offloading with Cost Awareness (OTSCOCA). This framework addresses Resource Matching, Task Sequencing, and Task Scheduling to enhance server utilization, reduce service latency, and improve service bootup times. Empirical results validate the efficacy of MCBMEC and OTSCOCA, demonstrating significant improvements in server efficiency, reduced service latency, faster service bootup times, and notable cost savings. These outcomes underscore the pivotal role of these methodologies in advancing mobile edge computing applications amidst the challenges of edge server limitations and traditional cloud-based approaches.</p>\",\"PeriodicalId\":15158,\"journal\":{\"name\":\"Journal of Big Data\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Big Data\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1186/s40537-024-00975-w\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Big Data","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1186/s40537-024-00975-w","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

近年来,移动应用程序在电子银行、增强现实、电子交通和电子医疗等领域激增。这些应用通常使用微服务构建,微服务是一种架构风格,应用由可独立部署的服务组成,专注于特定功能。移动设备无法在本地处理这些微服务,因此传统上使用基于云的框架,利用具有成本效益的虚拟机(VM)和边缘服务器来卸载这些任务。然而,云框架存在启动时间长、传输开销大的问题,而边缘服务器的计算资源有限。为了克服这些挑战,本研究引入了基于微服务容器的移动边缘云计算(MCBMEC)环境,并提出了一个创新框架--具有成本意识的优化任务调度和计算卸载(OTSCOCA)。该框架涉及资源匹配、任务排序和任务调度,以提高服务器利用率、减少服务延迟并改善服务启动时间。实证结果验证了 MCBMEC 和 OTSCOCA 的功效,表明服务器效率显著提高,服务延迟减少,服务启动时间加快,成本明显降低。这些结果凸显了这些方法在推进移动边缘计算应用中的关键作用,而边缘服务器的局限性和传统的基于云的方法则是这些方法面临的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Efficient microservices offloading for cost optimization in diverse MEC cloud networks

Efficient microservices offloading for cost optimization in diverse MEC cloud networks

In recent years, mobile applications have proliferated across domains such as E-banking, Augmented Reality, E-Transportation, and E-Healthcare. These applications are often built using microservices, an architectural style where the application is composed of independently deployable services focusing on specific functionalities. Mobile devices cannot process these microservices locally, so traditionally, cloud-based frameworks using cost-efficient Virtual Machines (VMs) and edge servers have been used to offload these tasks. However, cloud frameworks suffer from extended boot times and high transmission overhead, while edge servers have limited computational resources. To overcome these challenges, this study introduces a Microservices Container-Based Mobile Edge Cloud Computing (MCBMEC) environment and proposes an innovative framework, Optimization Task Scheduling and Computational Offloading with Cost Awareness (OTSCOCA). This framework addresses Resource Matching, Task Sequencing, and Task Scheduling to enhance server utilization, reduce service latency, and improve service bootup times. Empirical results validate the efficacy of MCBMEC and OTSCOCA, demonstrating significant improvements in server efficiency, reduced service latency, faster service bootup times, and notable cost savings. These outcomes underscore the pivotal role of these methodologies in advancing mobile edge computing applications amidst the challenges of edge server limitations and traditional cloud-based approaches.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Big Data
Journal of Big Data Computer Science-Information Systems
CiteScore
17.80
自引率
3.70%
发文量
105
审稿时长
13 weeks
期刊介绍: The Journal of Big Data publishes high-quality, scholarly research papers, methodologies, and case studies covering a broad spectrum of topics, from big data analytics to data-intensive computing and all applications of big data research. It addresses challenges facing big data today and in the future, including data capture and storage, search, sharing, analytics, technologies, visualization, architectures, data mining, machine learning, cloud computing, distributed systems, and scalable storage. The journal serves as a seminal source of innovative material for academic researchers and practitioners alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信