Qi Bin Kwong, Yee Thung Kon, Wan Rusydiah W. Rusik, Mohd Nor Azizi Shabudin, Shahirah Shazana A. Rahman, Harikrishna Kulaveerasingam, David Ross Appleton
{"title":"利用基于 GAN 的增强技术改进油棕榈树细分模型","authors":"Qi Bin Kwong, Yee Thung Kon, Wan Rusydiah W. Rusik, Mohd Nor Azizi Shabudin, Shahirah Shazana A. Rahman, Harikrishna Kulaveerasingam, David Ross Appleton","doi":"10.1186/s40537-024-00990-x","DOIUrl":null,"url":null,"abstract":"<p>In digital agriculture, accurate crop detection is fundamental to developing automated systems for efficient plantation management. For oil palm, the main challenge lies in developing robust models that perform well in different environmental conditions. This study addresses the feasibility of using GAN augmentation methods to improve palm detection models. For this purpose, drone images of young palms (< 5 year-old) from eight different estates were collected, annotated, and used to build a baseline detection model based on DETR. StyleGAN2 was trained on the extracted palms and then used to generate a series of synthetic palms, which were then inserted into tiles representing different environments. CycleGAN networks were trained for bidirectional translation between synthetic and real tiles, subsequently utilized to augment the authenticity of synthetic tiles. Both synthetic and real tiles were used to train the GAN-based detection model. The baseline model achieved precision and recall values of 95.8% and 97.2%. The GAN-based model achieved comparable result, with precision and recall values of 98.5% and 98.6%. In the challenge dataset 1 consisting older palms (> 5 year-old), both models also achieved similar accuracies, with baseline model achieving precision and recall of 93.1% and 99.4%, and GAN-based model achieving 95.7% and 99.4%. As for the challenge dataset 2 consisting of storm affected palms, the baseline model achieved precision of 100% but recall was only 13%. The GAN-based model achieved a significantly better result, with a precision and recall values of 98.7% and 95.3%. This result demonstrates that images generated by GANs have the potential to enhance the accuracies of palm detection models.</p>","PeriodicalId":15158,"journal":{"name":"Journal of Big Data","volume":"25 1","pages":""},"PeriodicalIF":8.6000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing oil palm segmentation model with GAN-based augmentation\",\"authors\":\"Qi Bin Kwong, Yee Thung Kon, Wan Rusydiah W. Rusik, Mohd Nor Azizi Shabudin, Shahirah Shazana A. Rahman, Harikrishna Kulaveerasingam, David Ross Appleton\",\"doi\":\"10.1186/s40537-024-00990-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In digital agriculture, accurate crop detection is fundamental to developing automated systems for efficient plantation management. For oil palm, the main challenge lies in developing robust models that perform well in different environmental conditions. This study addresses the feasibility of using GAN augmentation methods to improve palm detection models. For this purpose, drone images of young palms (< 5 year-old) from eight different estates were collected, annotated, and used to build a baseline detection model based on DETR. StyleGAN2 was trained on the extracted palms and then used to generate a series of synthetic palms, which were then inserted into tiles representing different environments. CycleGAN networks were trained for bidirectional translation between synthetic and real tiles, subsequently utilized to augment the authenticity of synthetic tiles. Both synthetic and real tiles were used to train the GAN-based detection model. The baseline model achieved precision and recall values of 95.8% and 97.2%. The GAN-based model achieved comparable result, with precision and recall values of 98.5% and 98.6%. In the challenge dataset 1 consisting older palms (> 5 year-old), both models also achieved similar accuracies, with baseline model achieving precision and recall of 93.1% and 99.4%, and GAN-based model achieving 95.7% and 99.4%. As for the challenge dataset 2 consisting of storm affected palms, the baseline model achieved precision of 100% but recall was only 13%. The GAN-based model achieved a significantly better result, with a precision and recall values of 98.7% and 95.3%. This result demonstrates that images generated by GANs have the potential to enhance the accuracies of palm detection models.</p>\",\"PeriodicalId\":15158,\"journal\":{\"name\":\"Journal of Big Data\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2024-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Big Data\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1186/s40537-024-00990-x\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Big Data","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1186/s40537-024-00990-x","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
摘要
在数字农业领域,准确的作物检测是开发高效种植管理自动化系统的基础。对于油棕榈树来说,主要挑战在于开发在不同环境条件下表现良好的稳健模型。本研究探讨了使用 GAN 增强方法改进棕榈检测模型的可行性。为此,研究人员从八个不同的庄园收集了幼嫩棕榈树(5 岁)的无人机图像,并对其进行了注释,用于建立基于 DETR 的基准检测模型。对提取的棕榈树进行了 StyleGAN2 训练,然后用于生成一系列合成棕榈树,并将其插入代表不同环境的瓷砖中。对 CycleGAN 网络进行了训练,以实现合成和真实瓷砖之间的双向转换,随后用于增强合成瓷砖的真实性。合成瓷砖和真实瓷砖都用于训练基于 GAN 的检测模型。基线模型的精确度和召回率分别达到 95.8% 和 97.2%。基于 GAN 的模型取得了不相上下的结果,精确度和召回值分别为 98.5% 和 98.6%。在由年龄较大的手掌(5 岁)组成的挑战数据集 1 中,两个模型也取得了相似的准确度,基线模型的准确度和召回率分别为 93.1% 和 99.4%,基于 GAN 的模型的准确度和召回率分别为 95.7% 和 99.4%。至于由受风暴影响的手掌组成的挑战数据集 2,基线模型的精确度达到了 100%,但召回率仅为 13%。基于 GAN 的模型取得了明显更好的结果,精确率和召回率分别为 98.7% 和 95.3%。这一结果表明,由 GAN 生成的图像有可能提高棕榈检测模型的精确度。
Enhancing oil palm segmentation model with GAN-based augmentation
In digital agriculture, accurate crop detection is fundamental to developing automated systems for efficient plantation management. For oil palm, the main challenge lies in developing robust models that perform well in different environmental conditions. This study addresses the feasibility of using GAN augmentation methods to improve palm detection models. For this purpose, drone images of young palms (< 5 year-old) from eight different estates were collected, annotated, and used to build a baseline detection model based on DETR. StyleGAN2 was trained on the extracted palms and then used to generate a series of synthetic palms, which were then inserted into tiles representing different environments. CycleGAN networks were trained for bidirectional translation between synthetic and real tiles, subsequently utilized to augment the authenticity of synthetic tiles. Both synthetic and real tiles were used to train the GAN-based detection model. The baseline model achieved precision and recall values of 95.8% and 97.2%. The GAN-based model achieved comparable result, with precision and recall values of 98.5% and 98.6%. In the challenge dataset 1 consisting older palms (> 5 year-old), both models also achieved similar accuracies, with baseline model achieving precision and recall of 93.1% and 99.4%, and GAN-based model achieving 95.7% and 99.4%. As for the challenge dataset 2 consisting of storm affected palms, the baseline model achieved precision of 100% but recall was only 13%. The GAN-based model achieved a significantly better result, with a precision and recall values of 98.7% and 95.3%. This result demonstrates that images generated by GANs have the potential to enhance the accuracies of palm detection models.
期刊介绍:
The Journal of Big Data publishes high-quality, scholarly research papers, methodologies, and case studies covering a broad spectrum of topics, from big data analytics to data-intensive computing and all applications of big data research. It addresses challenges facing big data today and in the future, including data capture and storage, search, sharing, analytics, technologies, visualization, architectures, data mining, machine learning, cloud computing, distributed systems, and scalable storage. The journal serves as a seminal source of innovative material for academic researchers and practitioners alike.