采用 FlexRay 协议和混合网络攻击的二维位移变化系统的递归集合成员过滤

IF 2.7 4区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS
Pan Zhang, Chaoqun Zhu, Zhiwen Wang, Bin Yang
{"title":"采用 FlexRay 协议和混合网络攻击的二维位移变化系统的递归集合成员过滤","authors":"Pan Zhang, Chaoqun Zhu, Zhiwen Wang, Bin Yang","doi":"10.1002/asjc.3478","DOIUrl":null,"url":null,"abstract":"The problem of recursive set-membership filter design for two-dimensional (2-D) systems subject to FlexRay communication protocol and hybrid cyber attacks (HCAs) is investigated in this article. The FlexRay protocol that integrates time-triggered and event-triggered mechanisms and involves a series of pre-defined communication cycles based on bidirectional metrics is developed to alleviate the network bandwidth load. Furthermore, the envisioned system is exposed to false data injection and denial-of-service attacks that occur in a randomized manner. Subsequently, the dynamic filtering error system (FES) subject to bidirectional evolutionary HCAs and FlexRay scheduling protocol is constructed. Then, sufficient conditions are obtained such that the dynamic FES consistently resides within an ellipsoidal set by utilizing double mathematical induction and recursive linear matrix inequalities (RLMIs). Moreover, the optimal filtering algorithm is given by minimizing the ellipsoidal constraints from the perspective of the traces of the matrix. The effectiveness of the presented recursive set-membership filter design approach is validated by a long-distance transmission line example.","PeriodicalId":55453,"journal":{"name":"Asian Journal of Control","volume":"20 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recursive set-membership filtering for two-dimensional shift-varying systems with FlexRay protocol and hybrid cyber attacks\",\"authors\":\"Pan Zhang, Chaoqun Zhu, Zhiwen Wang, Bin Yang\",\"doi\":\"10.1002/asjc.3478\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem of recursive set-membership filter design for two-dimensional (2-D) systems subject to FlexRay communication protocol and hybrid cyber attacks (HCAs) is investigated in this article. The FlexRay protocol that integrates time-triggered and event-triggered mechanisms and involves a series of pre-defined communication cycles based on bidirectional metrics is developed to alleviate the network bandwidth load. Furthermore, the envisioned system is exposed to false data injection and denial-of-service attacks that occur in a randomized manner. Subsequently, the dynamic filtering error system (FES) subject to bidirectional evolutionary HCAs and FlexRay scheduling protocol is constructed. Then, sufficient conditions are obtained such that the dynamic FES consistently resides within an ellipsoidal set by utilizing double mathematical induction and recursive linear matrix inequalities (RLMIs). Moreover, the optimal filtering algorithm is given by minimizing the ellipsoidal constraints from the perspective of the traces of the matrix. The effectiveness of the presented recursive set-membership filter design approach is validated by a long-distance transmission line example.\",\"PeriodicalId\":55453,\"journal\":{\"name\":\"Asian Journal of Control\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Journal of Control\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1002/asjc.3478\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Control","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/asjc.3478","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了受 FlexRay 通信协议和混合网络攻击(HCA)影响的二维(2-D)系统的递归集合成员滤波器设计问题。FlexRay 协议集成了时间触发和事件触发机制,并涉及一系列基于双向度量的预定义通信周期,旨在减轻网络带宽负载。此外,设想中的系统还面临着以随机方式发生的虚假数据注入和拒绝服务攻击。随后,构建了受双向演化 HCA 和 FlexRay 调度协议影响的动态过滤错误系统(FES)。然后,利用双重数学归纳法和递归线性矩阵不等式(RLMI),获得了动态 FES 始终位于椭圆形集合内的充分条件。此外,还从矩阵迹线的角度出发,通过最小化椭圆约束给出了最优滤波算法。所提出的递归集成员滤波器设计方法的有效性通过一个长距离输电线路实例得到了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recursive set-membership filtering for two-dimensional shift-varying systems with FlexRay protocol and hybrid cyber attacks
The problem of recursive set-membership filter design for two-dimensional (2-D) systems subject to FlexRay communication protocol and hybrid cyber attacks (HCAs) is investigated in this article. The FlexRay protocol that integrates time-triggered and event-triggered mechanisms and involves a series of pre-defined communication cycles based on bidirectional metrics is developed to alleviate the network bandwidth load. Furthermore, the envisioned system is exposed to false data injection and denial-of-service attacks that occur in a randomized manner. Subsequently, the dynamic filtering error system (FES) subject to bidirectional evolutionary HCAs and FlexRay scheduling protocol is constructed. Then, sufficient conditions are obtained such that the dynamic FES consistently resides within an ellipsoidal set by utilizing double mathematical induction and recursive linear matrix inequalities (RLMIs). Moreover, the optimal filtering algorithm is given by minimizing the ellipsoidal constraints from the perspective of the traces of the matrix. The effectiveness of the presented recursive set-membership filter design approach is validated by a long-distance transmission line example.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Asian Journal of Control
Asian Journal of Control 工程技术-自动化与控制系统
CiteScore
4.80
自引率
25.00%
发文量
253
审稿时长
7.2 months
期刊介绍: The Asian Journal of Control, an Asian Control Association (ACA) and Chinese Automatic Control Society (CACS) affiliated journal, is the first international journal originating from the Asia Pacific region. The Asian Journal of Control publishes papers on original theoretical and practical research and developments in the areas of control, involving all facets of control theory and its application. Published six times a year, the Journal aims to be a key platform for control communities throughout the world. The Journal provides a forum where control researchers and practitioners can exchange knowledge and experiences on the latest advances in the control areas, and plays an educational role for students and experienced researchers in other disciplines interested in this continually growing field. The scope of the journal is extensive. Topics include: The theory and design of control systems and components, encompassing: Robust and distributed control using geometric, optimal, stochastic and nonlinear methods Game theory and state estimation Adaptive control, including neural networks, learning, parameter estimation and system fault detection Artificial intelligence, fuzzy and expert systems Hierarchical and man-machine systems All parts of systems engineering which consider the reliability of components and systems Emerging application areas, such as: Robotics Mechatronics Computers for computer-aided design, manufacturing, and control of various industrial processes Space vehicles and aircraft, ships, and traffic Biomedical systems National economies Power systems Agriculture Natural resources.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信