旋转晶格中具有隐藏拓扑结构的边缘状态

Udbhav Vishwakarma, Murthaza Irfan, Georgios Theocharis, Rajesh Chaunsali
{"title":"旋转晶格中具有隐藏拓扑结构的边缘状态","authors":"Udbhav Vishwakarma, Murthaza Irfan, Georgios Theocharis, Rajesh Chaunsali","doi":"arxiv-2409.07949","DOIUrl":null,"url":null,"abstract":"Symmetries -- whether explicit, latent, or hidden -- are fundamental to\nunderstanding topological materials. This work introduces a prototypical\nspring-mass model that extends beyond established canonical models, revealing\ntopological edge states with distinct profiles at opposite edges. These edge\nstates originate from hidden symmetries that become apparent only in\ndeformation coordinates, as opposed to the conventional displacement\ncoordinates used for bulk-boundary correspondence. Our model realized through\nthe intricate connectivity of a spinner chain, demonstrates experimentally\ndistinct edge states at opposite ends. By extending this framework to two\ndimensions, we explore the conditions required for such edge waves and their\nhidden symmetry in deformation coordinates. We also show that these edge states\nare robust against disorders that respect the hidden symmetry. This research\npaves the way for advanced material designs with tailored boundary conditions\nand edge state profiles, offering potential applications in fields such as\nphotonics, acoustics, and mechanical metamaterials.","PeriodicalId":501482,"journal":{"name":"arXiv - PHYS - Classical Physics","volume":"41 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Edge States with Hidden Topology in Spinner Lattices\",\"authors\":\"Udbhav Vishwakarma, Murthaza Irfan, Georgios Theocharis, Rajesh Chaunsali\",\"doi\":\"arxiv-2409.07949\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Symmetries -- whether explicit, latent, or hidden -- are fundamental to\\nunderstanding topological materials. This work introduces a prototypical\\nspring-mass model that extends beyond established canonical models, revealing\\ntopological edge states with distinct profiles at opposite edges. These edge\\nstates originate from hidden symmetries that become apparent only in\\ndeformation coordinates, as opposed to the conventional displacement\\ncoordinates used for bulk-boundary correspondence. Our model realized through\\nthe intricate connectivity of a spinner chain, demonstrates experimentally\\ndistinct edge states at opposite ends. By extending this framework to two\\ndimensions, we explore the conditions required for such edge waves and their\\nhidden symmetry in deformation coordinates. We also show that these edge states\\nare robust against disorders that respect the hidden symmetry. This research\\npaves the way for advanced material designs with tailored boundary conditions\\nand edge state profiles, offering potential applications in fields such as\\nphotonics, acoustics, and mechanical metamaterials.\",\"PeriodicalId\":501482,\"journal\":{\"name\":\"arXiv - PHYS - Classical Physics\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Classical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07949\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Classical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07949","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对称性--无论是显性的、潜在的还是隐性的--都是了解拓扑材料的基础。这项研究引入了一种原型弹簧质量模型,它超越了既有的典型模型,揭示了拓扑边缘态,在相对边缘具有独特的轮廓。这些边缘态源于隐藏的对称性,只有在形变坐标(而不是用于体界对应的传统位移坐标)中才会显现出来。我们的模型通过纺锤链错综复杂的连通性来实现,在实验中展示了相对两端不同的边缘状态。通过将这一框架扩展到二维,我们探索了这种边缘波所需的条件及其在形变坐标中隐藏的对称性。我们还证明,这些边缘状态对尊重隐藏对称性的紊乱具有鲁棒性。这项研究为具有定制边界条件和边缘状态剖面的先进材料设计铺平了道路,为光子学、声学和机械超材料等领域提供了潜在应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Edge States with Hidden Topology in Spinner Lattices
Symmetries -- whether explicit, latent, or hidden -- are fundamental to understanding topological materials. This work introduces a prototypical spring-mass model that extends beyond established canonical models, revealing topological edge states with distinct profiles at opposite edges. These edge states originate from hidden symmetries that become apparent only in deformation coordinates, as opposed to the conventional displacement coordinates used for bulk-boundary correspondence. Our model realized through the intricate connectivity of a spinner chain, demonstrates experimentally distinct edge states at opposite ends. By extending this framework to two dimensions, we explore the conditions required for such edge waves and their hidden symmetry in deformation coordinates. We also show that these edge states are robust against disorders that respect the hidden symmetry. This research paves the way for advanced material designs with tailored boundary conditions and edge state profiles, offering potential applications in fields such as photonics, acoustics, and mechanical metamaterials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信