搅拌棒吸附萃取与热脱附-气相色谱-质谱联用的水中全氟羧酸 (PFCAs) 绿色分析方法

IF 3 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
Water Pub Date : 2024-09-08 DOI:10.3390/w16172543
Ahsan Habib, Elizabeth Noriega Landa, Kiana L. Holbrook, Angelica A. Chacon, Wen-Yee Lee
{"title":"搅拌棒吸附萃取与热脱附-气相色谱-质谱联用的水中全氟羧酸 (PFCAs) 绿色分析方法","authors":"Ahsan Habib, Elizabeth Noriega Landa, Kiana L. Holbrook, Angelica A. Chacon, Wen-Yee Lee","doi":"10.3390/w16172543","DOIUrl":null,"url":null,"abstract":"Perfluoroalkyl carboxylic acids (PFCAs) are a significant group of per- and polyfluoroalkyl substances (PFASs). They are persistent organic chemicals manufactured for their resistance to heat, water, and stains. PFCAs are ubiquitous in the environment, particularly in surface water and wastewater, because they are widely used in everyday consumer products. This contamination poses a risk to drinking water supplies and human health, necessitating sensitive and effective analytical methods. Traditional liquid chromatography–tandem mass spectrometry (LC-MS/MS) is commonly used but involves complex sample handling and high costs. In this study, we developed an enhanced stir bar sorptive extraction (SBSE) method coupled with thermal desorption–gas chromatography–mass spectrometry (TD-GC-MS) for the analysis of PFCAs in water. This method demonstrates linearity, with R2 values from 0.9892 to 0.9988, and low limits of detection (LOD) between 21.17 ng/L and 73.96 ng/L. Recovery rates varied from 47 to 97%, suggesting efficient extraction. Compared to traditional methods, the developed SBSE technique requires only a 1 mL sample volume and minimal amounts of solvents, enhancing eco-friendliness and reducing potential contamination and handling errors. This method also demonstrated good precision and robustness across various water matrices. Overall, the developed method offers a precise, eco-friendly, and reliable approach for analyzing PFCAs in diverse water samples.","PeriodicalId":23788,"journal":{"name":"Water","volume":"14 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Green Analytical Method for Perfluorocarboxylic Acids (PFCAs) in Water of Stir Bar Sorptive Extraction Coupled with Thermal Desorption–Gas Chromatography—Mass Spectroscopy\",\"authors\":\"Ahsan Habib, Elizabeth Noriega Landa, Kiana L. Holbrook, Angelica A. Chacon, Wen-Yee Lee\",\"doi\":\"10.3390/w16172543\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Perfluoroalkyl carboxylic acids (PFCAs) are a significant group of per- and polyfluoroalkyl substances (PFASs). They are persistent organic chemicals manufactured for their resistance to heat, water, and stains. PFCAs are ubiquitous in the environment, particularly in surface water and wastewater, because they are widely used in everyday consumer products. This contamination poses a risk to drinking water supplies and human health, necessitating sensitive and effective analytical methods. Traditional liquid chromatography–tandem mass spectrometry (LC-MS/MS) is commonly used but involves complex sample handling and high costs. In this study, we developed an enhanced stir bar sorptive extraction (SBSE) method coupled with thermal desorption–gas chromatography–mass spectrometry (TD-GC-MS) for the analysis of PFCAs in water. This method demonstrates linearity, with R2 values from 0.9892 to 0.9988, and low limits of detection (LOD) between 21.17 ng/L and 73.96 ng/L. Recovery rates varied from 47 to 97%, suggesting efficient extraction. Compared to traditional methods, the developed SBSE technique requires only a 1 mL sample volume and minimal amounts of solvents, enhancing eco-friendliness and reducing potential contamination and handling errors. This method also demonstrated good precision and robustness across various water matrices. Overall, the developed method offers a precise, eco-friendly, and reliable approach for analyzing PFCAs in diverse water samples.\",\"PeriodicalId\":23788,\"journal\":{\"name\":\"Water\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.3390/w16172543\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3390/w16172543","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

全氟烷基羧酸(PFCAs)是全氟烷基和多氟烷基物质(PFAS)中的一个重要类别。全氟烷基羧酸是一类重要的全氟烷基和多氟烷基物质(PFASs),它们是以耐热、耐水和耐污而制造的持久性有机化学品。全氟辛烷磺酸在环境中无处不在,尤其是在地表水和废水中,因为它们被广泛应用于日常消费品中。这种污染对饮用水供应和人类健康构成了威胁,因此需要采用灵敏有效的分析方法。传统的液相色谱-串联质谱法(LC-MS/MS)是常用的方法,但涉及复杂的样品处理和高昂的成本。在这项研究中,我们开发了一种增强型搅拌棒吸附萃取(SBSE)方法,并将其与热脱附-气相色谱-质谱联用(TD-GC-MS),用于分析水中的全氟辛烷磺酸。该方法线性关系良好,R2 值在 0.9892 至 0.9988 之间,检出限(LOD)较低,在 21.17 纳克/升至 73.96 纳克/升之间。回收率在 47% 至 97% 之间,表明提取效率高。与传统方法相比,所开发的 SBSE 技术只需 1 mL 样品量和极少量的溶剂,从而提高了生态友好性并减少了潜在的污染和处理错误。该方法还在各种水基质中表现出良好的精度和稳健性。总之,所开发的方法为分析各种水样中的全氟辛烷磺酸提供了一种精确、环保和可靠的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Green Analytical Method for Perfluorocarboxylic Acids (PFCAs) in Water of Stir Bar Sorptive Extraction Coupled with Thermal Desorption–Gas Chromatography—Mass Spectroscopy
Perfluoroalkyl carboxylic acids (PFCAs) are a significant group of per- and polyfluoroalkyl substances (PFASs). They are persistent organic chemicals manufactured for their resistance to heat, water, and stains. PFCAs are ubiquitous in the environment, particularly in surface water and wastewater, because they are widely used in everyday consumer products. This contamination poses a risk to drinking water supplies and human health, necessitating sensitive and effective analytical methods. Traditional liquid chromatography–tandem mass spectrometry (LC-MS/MS) is commonly used but involves complex sample handling and high costs. In this study, we developed an enhanced stir bar sorptive extraction (SBSE) method coupled with thermal desorption–gas chromatography–mass spectrometry (TD-GC-MS) for the analysis of PFCAs in water. This method demonstrates linearity, with R2 values from 0.9892 to 0.9988, and low limits of detection (LOD) between 21.17 ng/L and 73.96 ng/L. Recovery rates varied from 47 to 97%, suggesting efficient extraction. Compared to traditional methods, the developed SBSE technique requires only a 1 mL sample volume and minimal amounts of solvents, enhancing eco-friendliness and reducing potential contamination and handling errors. This method also demonstrated good precision and robustness across various water matrices. Overall, the developed method offers a precise, eco-friendly, and reliable approach for analyzing PFCAs in diverse water samples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Water
Water WATER RESOURCES-
CiteScore
5.80
自引率
14.70%
发文量
3491
审稿时长
19.85 days
期刊介绍: Water (ISSN 2073-4441) is an international and cross-disciplinary scholarly journal covering all aspects of water including water science and technology, and the hydrology, ecology and management of water resources. It publishes regular research papers, critical reviews and short communications, and there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信