评估 Pedotransfer 函数以估算土壤水分保持曲线:概念回顾

IF 3 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
Water Pub Date : 2024-09-09 DOI:10.3390/w16172547
Umar Farooq, Muhammad Ajmal, Shicheng Li, James Yang, Sana Ullah
{"title":"评估 Pedotransfer 函数以估算土壤水分保持曲线:概念回顾","authors":"Umar Farooq, Muhammad Ajmal, Shicheng Li, James Yang, Sana Ullah","doi":"10.3390/w16172547","DOIUrl":null,"url":null,"abstract":"The soil water retention curve (SWRC) is a vital soil property used to evaluate the soil’s water holding capacity, a critical factor in various applications such as determining soil water availability for plants, soil conservation and management, climate change adaptation, and mitigation of flood risks. Estimating SWRC directly in the field and laboratory is a time-consuming and laborious process and requires numerous instruments and measurements at a specific location. In this context, various estimation approaches have been developed, including pedotransfer functions (PTFs), over the past three decades to estimate soil water retention and its associated properties. Despite the efficiencies, PTFs and semi-physical approach-based models often have several limitations, particularly in the dry range of the SWRC. PTFs-based modeling has become a key research topic due to readily available soil data and cost-effective methods for deriving essential soil parameters, which enable more efficient decision-making in sustainable land-use management. Therefore, advancement and adjustment are necessary for reliable estimations of the SWRC from readily available data. This article reviews the evaluation of the current and past PTFs for estimating the SWRC. This study aims to evaluate PTF techniques and semi-physical approaches based on soil texture, bulk density, porosity, and other related factors. Additionally, it also assesses the performance and limitations of various common semi-physical models proposed and developed by Arya and Paris, Haverkamp and Parlange, the Modified Kovács model by Aubertin et al., Chang and Cheng, Meskini-Vishkaee et al., Vidler et al., and Zhai et al. This assessment will be effective for researchers in this field and provide valuable insight into the importance of new PTFs for modeling SWRC.","PeriodicalId":23788,"journal":{"name":"Water","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of Pedotransfer Functions to Estimate Soil Water Retention Curve: A Conceptual Review\",\"authors\":\"Umar Farooq, Muhammad Ajmal, Shicheng Li, James Yang, Sana Ullah\",\"doi\":\"10.3390/w16172547\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The soil water retention curve (SWRC) is a vital soil property used to evaluate the soil’s water holding capacity, a critical factor in various applications such as determining soil water availability for plants, soil conservation and management, climate change adaptation, and mitigation of flood risks. Estimating SWRC directly in the field and laboratory is a time-consuming and laborious process and requires numerous instruments and measurements at a specific location. In this context, various estimation approaches have been developed, including pedotransfer functions (PTFs), over the past three decades to estimate soil water retention and its associated properties. Despite the efficiencies, PTFs and semi-physical approach-based models often have several limitations, particularly in the dry range of the SWRC. PTFs-based modeling has become a key research topic due to readily available soil data and cost-effective methods for deriving essential soil parameters, which enable more efficient decision-making in sustainable land-use management. Therefore, advancement and adjustment are necessary for reliable estimations of the SWRC from readily available data. This article reviews the evaluation of the current and past PTFs for estimating the SWRC. This study aims to evaluate PTF techniques and semi-physical approaches based on soil texture, bulk density, porosity, and other related factors. Additionally, it also assesses the performance and limitations of various common semi-physical models proposed and developed by Arya and Paris, Haverkamp and Parlange, the Modified Kovács model by Aubertin et al., Chang and Cheng, Meskini-Vishkaee et al., Vidler et al., and Zhai et al. This assessment will be effective for researchers in this field and provide valuable insight into the importance of new PTFs for modeling SWRC.\",\"PeriodicalId\":23788,\"journal\":{\"name\":\"Water\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.3390/w16172547\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3390/w16172547","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

土壤水分保持曲线(SWRC)是一种重要的土壤特性,用于评估土壤的持水能力,是确定植物土壤水分可用性、土壤保持与管理、适应气候变化和减轻洪水风险等各种应用中的关键因素。在野外和实验室直接估算土壤持水量是一个费时费力的过程,需要在特定地点使用大量仪器并进行测量。在这种情况下,过去三十年来,人们开发了各种估算方法,其中包括 pedotransfer 函数 (PTF),用于估算土壤持水量及其相关属性。尽管效率很高,但 PTFs 和基于半物理方法的模型往往有一些局限性,尤其是在 SWRC 的干燥范围内。基于 PTFs 的建模已成为一个重要的研究课题,因为它可以利用现成的土壤数据和具有成本效益的方法推导出重要的土壤参数,从而在可持续土地利用管理方面做出更有效的决策。因此,要想利用现成的数据对 SWRC 进行可靠的估算,就必须对其进行改进和调整。本文回顾了对当前和过去用于估算 SWRC 的 PTF 的评估。本研究旨在评估基于土壤质地、容重、孔隙度和其他相关因素的 PTF 技术和半物理方法。此外,文章还评估了 Arya 和 Paris、Haverkamp 和 Parlange、Aubertin 等人的 Modified Kovács 模型、Chang 和 Cheng、Meskini-Vishkaee 等人、Vidler 等人以及 Zhai 等人提出和开发的各种常见半物理模型的性能和局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluation of Pedotransfer Functions to Estimate Soil Water Retention Curve: A Conceptual Review
The soil water retention curve (SWRC) is a vital soil property used to evaluate the soil’s water holding capacity, a critical factor in various applications such as determining soil water availability for plants, soil conservation and management, climate change adaptation, and mitigation of flood risks. Estimating SWRC directly in the field and laboratory is a time-consuming and laborious process and requires numerous instruments and measurements at a specific location. In this context, various estimation approaches have been developed, including pedotransfer functions (PTFs), over the past three decades to estimate soil water retention and its associated properties. Despite the efficiencies, PTFs and semi-physical approach-based models often have several limitations, particularly in the dry range of the SWRC. PTFs-based modeling has become a key research topic due to readily available soil data and cost-effective methods for deriving essential soil parameters, which enable more efficient decision-making in sustainable land-use management. Therefore, advancement and adjustment are necessary for reliable estimations of the SWRC from readily available data. This article reviews the evaluation of the current and past PTFs for estimating the SWRC. This study aims to evaluate PTF techniques and semi-physical approaches based on soil texture, bulk density, porosity, and other related factors. Additionally, it also assesses the performance and limitations of various common semi-physical models proposed and developed by Arya and Paris, Haverkamp and Parlange, the Modified Kovács model by Aubertin et al., Chang and Cheng, Meskini-Vishkaee et al., Vidler et al., and Zhai et al. This assessment will be effective for researchers in this field and provide valuable insight into the importance of new PTFs for modeling SWRC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Water
Water WATER RESOURCES-
CiteScore
5.80
自引率
14.70%
发文量
3491
审稿时长
19.85 days
期刊介绍: Water (ISSN 2073-4441) is an international and cross-disciplinary scholarly journal covering all aspects of water including water science and technology, and the hydrology, ecology and management of water resources. It publishes regular research papers, critical reviews and short communications, and there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信