{"title":"利用基于共轭的马尔科夫链模型对高斯时间序列数据进行变化点估计","authors":"Li-Hsien Sun, Yu-Kai Wang, Lien-Hsi Liu, Takeshi Emura, Chi-Yang Chiu","doi":"10.1007/s00180-024-01541-x","DOIUrl":null,"url":null,"abstract":"<p>This paper proposes a method for change-point estimation, focusing on detecting structural shifts within time series data. Traditional maximum likelihood estimation (MLE) methods assume either independence or linear dependence via auto-regressive models. To address this limitation, the paper introduces copula-based Markov chain models, offering more flexible dependence modeling. These models treat a Gaussian time series as a Markov chain and utilize copula functions to handle serial dependence. The profile MLE procedure is then employed to estimate the change-point and other model parameters, with the Newton–Raphson algorithm facilitating numerical calculations for the estimators. The proposed approach is evaluated through simulations and real stock return data, considering two distinct periods: the 2008 financial crisis and the COVID-19 pandemic in 2020.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Change point estimation for Gaussian time series data with copula-based Markov chain models\",\"authors\":\"Li-Hsien Sun, Yu-Kai Wang, Lien-Hsi Liu, Takeshi Emura, Chi-Yang Chiu\",\"doi\":\"10.1007/s00180-024-01541-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper proposes a method for change-point estimation, focusing on detecting structural shifts within time series data. Traditional maximum likelihood estimation (MLE) methods assume either independence or linear dependence via auto-regressive models. To address this limitation, the paper introduces copula-based Markov chain models, offering more flexible dependence modeling. These models treat a Gaussian time series as a Markov chain and utilize copula functions to handle serial dependence. The profile MLE procedure is then employed to estimate the change-point and other model parameters, with the Newton–Raphson algorithm facilitating numerical calculations for the estimators. The proposed approach is evaluated through simulations and real stock return data, considering two distinct periods: the 2008 financial crisis and the COVID-19 pandemic in 2020.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00180-024-01541-x\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00180-024-01541-x","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Change point estimation for Gaussian time series data with copula-based Markov chain models
This paper proposes a method for change-point estimation, focusing on detecting structural shifts within time series data. Traditional maximum likelihood estimation (MLE) methods assume either independence or linear dependence via auto-regressive models. To address this limitation, the paper introduces copula-based Markov chain models, offering more flexible dependence modeling. These models treat a Gaussian time series as a Markov chain and utilize copula functions to handle serial dependence. The profile MLE procedure is then employed to estimate the change-point and other model parameters, with the Newton–Raphson algorithm facilitating numerical calculations for the estimators. The proposed approach is evaluated through simulations and real stock return data, considering two distinct periods: the 2008 financial crisis and the COVID-19 pandemic in 2020.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.