网络上广义洛特卡-伏特拉模型的异质均场分析

IF 2 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
Fabián Aguirre-López
{"title":"网络上广义洛特卡-伏特拉模型的异质均场分析","authors":"Fabián Aguirre-López","doi":"10.1088/1751-8121/ad6ab2","DOIUrl":null,"url":null,"abstract":"We study the dynamics of the generalized Lotka–Volterra model with a network structure. Performing a high connectivity expansion for graphs, we write down a mean-field dynamical theory that incorporates degree heterogeneity. This allows us to describe the fixed points of the model in terms of a few simple order parameters. We extend the analysis even for diverging abundances, using a mapping to the replicator model. With this we present a unified approach for both cooperative and competitive systems that display complementary behaviors. In particular we show the central role of an order parameter called the critical degree, <inline-formula>\n<tex-math><?CDATA $g_\\mathrm{c}$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:msub><mml:mi>g</mml:mi><mml:mrow><mml:mi mathvariant=\"normal\">c</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math><inline-graphic xlink:href=\"aad6ab2ieqn1.gif\"></inline-graphic></inline-formula>. In the competitive regime <inline-formula>\n<tex-math><?CDATA $g_\\mathrm{c}$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:msub><mml:mi>g</mml:mi><mml:mrow><mml:mi mathvariant=\"normal\">c</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math><inline-graphic xlink:href=\"aad6ab2ieqn2.gif\"></inline-graphic></inline-formula> serves to distinguish high degree nodes that are more likely to go extinct, while in the cooperative regime it has the reverse role, it will determine the low degree nodes that tend to go relatively extinct.","PeriodicalId":16763,"journal":{"name":"Journal of Physics A: Mathematical and Theoretical","volume":"161 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heterogeneous mean-field analysis of the generalized Lotka–Volterra model on a network\",\"authors\":\"Fabián Aguirre-López\",\"doi\":\"10.1088/1751-8121/ad6ab2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the dynamics of the generalized Lotka–Volterra model with a network structure. Performing a high connectivity expansion for graphs, we write down a mean-field dynamical theory that incorporates degree heterogeneity. This allows us to describe the fixed points of the model in terms of a few simple order parameters. We extend the analysis even for diverging abundances, using a mapping to the replicator model. With this we present a unified approach for both cooperative and competitive systems that display complementary behaviors. In particular we show the central role of an order parameter called the critical degree, <inline-formula>\\n<tex-math><?CDATA $g_\\\\mathrm{c}$?></tex-math><mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:msub><mml:mi>g</mml:mi><mml:mrow><mml:mi mathvariant=\\\"normal\\\">c</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math><inline-graphic xlink:href=\\\"aad6ab2ieqn1.gif\\\"></inline-graphic></inline-formula>. In the competitive regime <inline-formula>\\n<tex-math><?CDATA $g_\\\\mathrm{c}$?></tex-math><mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:msub><mml:mi>g</mml:mi><mml:mrow><mml:mi mathvariant=\\\"normal\\\">c</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math><inline-graphic xlink:href=\\\"aad6ab2ieqn2.gif\\\"></inline-graphic></inline-formula> serves to distinguish high degree nodes that are more likely to go extinct, while in the cooperative regime it has the reverse role, it will determine the low degree nodes that tend to go relatively extinct.\",\"PeriodicalId\":16763,\"journal\":{\"name\":\"Journal of Physics A: Mathematical and Theoretical\",\"volume\":\"161 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics A: Mathematical and Theoretical\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1751-8121/ad6ab2\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics A: Mathematical and Theoretical","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1751-8121/ad6ab2","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了具有网络结构的广义 Lotka-Volterra 模型的动力学。通过对图形进行高连接性扩展,我们写出了包含度异质性的均场动力学理论。这样,我们就能用几个简单的阶次参数来描述模型的定点。我们利用复制器模型的映射,扩展了对发散丰度的分析。这样,我们就为显示互补行为的合作和竞争系统提供了一种统一的方法。我们特别展示了一个称为临界度 gc 的阶次参数的核心作用。在竞争系统中,临界值 gc 的作用是区分更有可能消亡的高程度节点,而在合作系统中,它的作用正好相反,它将决定倾向于相对消亡的低程度节点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Heterogeneous mean-field analysis of the generalized Lotka–Volterra model on a network
We study the dynamics of the generalized Lotka–Volterra model with a network structure. Performing a high connectivity expansion for graphs, we write down a mean-field dynamical theory that incorporates degree heterogeneity. This allows us to describe the fixed points of the model in terms of a few simple order parameters. We extend the analysis even for diverging abundances, using a mapping to the replicator model. With this we present a unified approach for both cooperative and competitive systems that display complementary behaviors. In particular we show the central role of an order parameter called the critical degree, gc. In the competitive regime gc serves to distinguish high degree nodes that are more likely to go extinct, while in the cooperative regime it has the reverse role, it will determine the low degree nodes that tend to go relatively extinct.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
14.30%
发文量
542
审稿时长
1.9 months
期刊介绍: Publishing 50 issues a year, Journal of Physics A: Mathematical and Theoretical is a major journal of theoretical physics reporting research on the mathematical structures that describe fundamental processes of the physical world and on the analytical, computational and numerical methods for exploring these structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信