k=2 伯恩斯坦-瓦齐拉尼算法的同态加密

IF 2 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
Pablo Fernández, Miguel A Martin-Delgado
{"title":"k=2 伯恩斯坦-瓦齐拉尼算法的同态加密","authors":"Pablo Fernández, Miguel A Martin-Delgado","doi":"10.1088/1751-8121/ad6c04","DOIUrl":null,"url":null,"abstract":"We introduce a class of circuits that solve a particular case of the Bernstein–Vazirani recursive problem for second-level recursion. This class of circuits allows for the implementation of the oracle using a number of <italic toggle=\"yes\">T</italic>-gates that grows linearly with the number of qubits in the problem. We find an application of this scheme to quantum homomorphic encryption (QHE), which is an important cryptographic technology useful for delegated quantum computing, allowing a remote server to perform quantum computations on encrypted quantum data, so that the server cannot know anything about the client’s data. Liang’s QHE schemes are suitable for circuits with a polynomial number of gates <inline-formula>\n<tex-math><?CDATA $T/T\\,^{\\dagger}$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:mi>T</mml:mi><mml:mrow><mml:mo>/</mml:mo></mml:mrow><mml:mi>T</mml:mi><mml:msup><mml:mstyle scriptlevel=\"0\"></mml:mstyle><mml:mrow><mml:mo>†</mml:mo></mml:mrow></mml:msup></mml:mrow></mml:math><inline-graphic xlink:href=\"aad6c04ieqn1.gif\"></inline-graphic></inline-formula>. Thus, the simplified circuits we have constructed can be evaluated homomorphically in an efficient manner.","PeriodicalId":16763,"journal":{"name":"Journal of Physics A: Mathematical and Theoretical","volume":"66 1 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Homomorphic encryption of the k=2 Bernstein–Vazirani algorithm\",\"authors\":\"Pablo Fernández, Miguel A Martin-Delgado\",\"doi\":\"10.1088/1751-8121/ad6c04\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a class of circuits that solve a particular case of the Bernstein–Vazirani recursive problem for second-level recursion. This class of circuits allows for the implementation of the oracle using a number of <italic toggle=\\\"yes\\\">T</italic>-gates that grows linearly with the number of qubits in the problem. We find an application of this scheme to quantum homomorphic encryption (QHE), which is an important cryptographic technology useful for delegated quantum computing, allowing a remote server to perform quantum computations on encrypted quantum data, so that the server cannot know anything about the client’s data. Liang’s QHE schemes are suitable for circuits with a polynomial number of gates <inline-formula>\\n<tex-math><?CDATA $T/T\\\\,^{\\\\dagger}$?></tex-math><mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mi>T</mml:mi><mml:mrow><mml:mo>/</mml:mo></mml:mrow><mml:mi>T</mml:mi><mml:msup><mml:mstyle scriptlevel=\\\"0\\\"></mml:mstyle><mml:mrow><mml:mo>†</mml:mo></mml:mrow></mml:msup></mml:mrow></mml:math><inline-graphic xlink:href=\\\"aad6c04ieqn1.gif\\\"></inline-graphic></inline-formula>. Thus, the simplified circuits we have constructed can be evaluated homomorphically in an efficient manner.\",\"PeriodicalId\":16763,\"journal\":{\"name\":\"Journal of Physics A: Mathematical and Theoretical\",\"volume\":\"66 1 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics A: Mathematical and Theoretical\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1751-8121/ad6c04\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics A: Mathematical and Theoretical","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1751-8121/ad6c04","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们介绍了一类电路,它能解决伯恩斯坦-瓦齐拉尼递归问题的一个特殊情况,即二级递归问题。这一类电路允许使用与问题中的量子比特数呈线性增长的 T 门来实现神谕。我们发现这一方案在量子同态加密(QHE)中的应用,QHE 是一种重要的加密技术,可用于委托量子计算,允许远程服务器对加密的量子数据进行量子计算,这样服务器就无法知道客户数据的任何信息。梁的 QHE 方案适用于具有多项式门数 T/T† 的电路。因此,我们构建的简化电路可以高效地进行同态评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Homomorphic encryption of the k=2 Bernstein–Vazirani algorithm
We introduce a class of circuits that solve a particular case of the Bernstein–Vazirani recursive problem for second-level recursion. This class of circuits allows for the implementation of the oracle using a number of T-gates that grows linearly with the number of qubits in the problem. We find an application of this scheme to quantum homomorphic encryption (QHE), which is an important cryptographic technology useful for delegated quantum computing, allowing a remote server to perform quantum computations on encrypted quantum data, so that the server cannot know anything about the client’s data. Liang’s QHE schemes are suitable for circuits with a polynomial number of gates T/T. Thus, the simplified circuits we have constructed can be evaluated homomorphically in an efficient manner.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
14.30%
发文量
542
审稿时长
1.9 months
期刊介绍: Publishing 50 issues a year, Journal of Physics A: Mathematical and Theoretical is a major journal of theoretical physics reporting research on the mathematical structures that describe fundamental processes of the physical world and on the analytical, computational and numerical methods for exploring these structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信