{"title":"分数扩散方程在阻尼和波浪之间进行插值","authors":"Andy Manapany, Sébastien Fumeron, Malte Henkel","doi":"10.1088/1751-8121/ad6c02","DOIUrl":null,"url":null,"abstract":"The behaviour of the solutions of the time-fractional diffusion equation, based on the Caputo derivative, is studied and its dependence on the fractional exponent is analysed. The time-fractional convection–diffusion equation is also solved and an application to Pennes bioheat model is presented. Generically, a wave-like transport at short times passes over to a diffusion-like behaviour at later times.","PeriodicalId":16763,"journal":{"name":"Journal of Physics A: Mathematical and Theoretical","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fractional diffusion equations interpolate between damping and waves\",\"authors\":\"Andy Manapany, Sébastien Fumeron, Malte Henkel\",\"doi\":\"10.1088/1751-8121/ad6c02\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The behaviour of the solutions of the time-fractional diffusion equation, based on the Caputo derivative, is studied and its dependence on the fractional exponent is analysed. The time-fractional convection–diffusion equation is also solved and an application to Pennes bioheat model is presented. Generically, a wave-like transport at short times passes over to a diffusion-like behaviour at later times.\",\"PeriodicalId\":16763,\"journal\":{\"name\":\"Journal of Physics A: Mathematical and Theoretical\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics A: Mathematical and Theoretical\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1751-8121/ad6c02\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics A: Mathematical and Theoretical","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1751-8121/ad6c02","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
Fractional diffusion equations interpolate between damping and waves
The behaviour of the solutions of the time-fractional diffusion equation, based on the Caputo derivative, is studied and its dependence on the fractional exponent is analysed. The time-fractional convection–diffusion equation is also solved and an application to Pennes bioheat model is presented. Generically, a wave-like transport at short times passes over to a diffusion-like behaviour at later times.
期刊介绍:
Publishing 50 issues a year, Journal of Physics A: Mathematical and Theoretical is a major journal of theoretical physics reporting research on the mathematical structures that describe fundamental processes of the physical world and on the analytical, computational and numerical methods for exploring these structures.