分数扩散方程在阻尼和波浪之间进行插值

IF 2 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
Andy Manapany, Sébastien Fumeron, Malte Henkel
{"title":"分数扩散方程在阻尼和波浪之间进行插值","authors":"Andy Manapany, Sébastien Fumeron, Malte Henkel","doi":"10.1088/1751-8121/ad6c02","DOIUrl":null,"url":null,"abstract":"The behaviour of the solutions of the time-fractional diffusion equation, based on the Caputo derivative, is studied and its dependence on the fractional exponent is analysed. The time-fractional convection–diffusion equation is also solved and an application to Pennes bioheat model is presented. Generically, a wave-like transport at short times passes over to a diffusion-like behaviour at later times.","PeriodicalId":16763,"journal":{"name":"Journal of Physics A: Mathematical and Theoretical","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fractional diffusion equations interpolate between damping and waves\",\"authors\":\"Andy Manapany, Sébastien Fumeron, Malte Henkel\",\"doi\":\"10.1088/1751-8121/ad6c02\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The behaviour of the solutions of the time-fractional diffusion equation, based on the Caputo derivative, is studied and its dependence on the fractional exponent is analysed. The time-fractional convection–diffusion equation is also solved and an application to Pennes bioheat model is presented. Generically, a wave-like transport at short times passes over to a diffusion-like behaviour at later times.\",\"PeriodicalId\":16763,\"journal\":{\"name\":\"Journal of Physics A: Mathematical and Theoretical\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics A: Mathematical and Theoretical\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1751-8121/ad6c02\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics A: Mathematical and Theoretical","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1751-8121/ad6c02","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

研究了基于卡普托导数的时间分数扩散方程的解的行为,并分析了其对分数指数的依赖性。此外,还求解了时间分数对流扩散方程,并介绍了该方程在 Pennes 生物热模型中的应用。一般来说,短时间内的波状传输会在后期转变为扩散行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fractional diffusion equations interpolate between damping and waves
The behaviour of the solutions of the time-fractional diffusion equation, based on the Caputo derivative, is studied and its dependence on the fractional exponent is analysed. The time-fractional convection–diffusion equation is also solved and an application to Pennes bioheat model is presented. Generically, a wave-like transport at short times passes over to a diffusion-like behaviour at later times.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
14.30%
发文量
542
审稿时长
1.9 months
期刊介绍: Publishing 50 issues a year, Journal of Physics A: Mathematical and Theoretical is a major journal of theoretical physics reporting research on the mathematical structures that describe fundamental processes of the physical world and on the analytical, computational and numerical methods for exploring these structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信