杨-巴克斯特方程的新型 ASEP 启发解法

IF 2 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
Suvendu Barik, Alexander S Garkun, Vladimir Gritsev
{"title":"杨-巴克斯特方程的新型 ASEP 启发解法","authors":"Suvendu Barik, Alexander S Garkun, Vladimir Gritsev","doi":"10.1088/1751-8121/ad6f81","DOIUrl":null,"url":null,"abstract":"We explore the algebraic structure of a particular ansatz of the Yang-Baxter equation (YBE), which is inspired by the Bethe Ansatz treatment of the asymmetric simple exclusion process spin-model. Various classes of Hamiltonian density arriving from the two types of R-matrices are found, which also appear as solutions of the constant YBE. We identify the idempotent and nilpotent categories of such constant R-matrices and perform a rank-1 numerical search for the lowest dimension. A summary of the final results reveals general non-Hermitian spin-1/2 chain models.","PeriodicalId":16763,"journal":{"name":"Journal of Physics A: Mathematical and Theoretical","volume":"6 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel ASEP-inspired solutions of the Yang-Baxter equation\",\"authors\":\"Suvendu Barik, Alexander S Garkun, Vladimir Gritsev\",\"doi\":\"10.1088/1751-8121/ad6f81\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We explore the algebraic structure of a particular ansatz of the Yang-Baxter equation (YBE), which is inspired by the Bethe Ansatz treatment of the asymmetric simple exclusion process spin-model. Various classes of Hamiltonian density arriving from the two types of R-matrices are found, which also appear as solutions of the constant YBE. We identify the idempotent and nilpotent categories of such constant R-matrices and perform a rank-1 numerical search for the lowest dimension. A summary of the final results reveals general non-Hermitian spin-1/2 chain models.\",\"PeriodicalId\":16763,\"journal\":{\"name\":\"Journal of Physics A: Mathematical and Theoretical\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics A: Mathematical and Theoretical\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1751-8121/ad6f81\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics A: Mathematical and Theoretical","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1751-8121/ad6f81","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们探索了杨-巴克斯特方程(Yang-Baxter equation,YBE)的一种特殊解析的代数结构,这种解析受到非对称简单排除过程自旋模型的贝特解析处理的启发。我们发现了从两类 R 矩得出的各类哈密顿密度,它们也作为恒定 YBE 的解出现。我们确定了这类恒定 R 矩的幂等和零等类别,并对最低维度进行了秩-1 数值搜索。对最终结果的总结揭示了一般的非赫米提自旋-1/2 链模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Novel ASEP-inspired solutions of the Yang-Baxter equation
We explore the algebraic structure of a particular ansatz of the Yang-Baxter equation (YBE), which is inspired by the Bethe Ansatz treatment of the asymmetric simple exclusion process spin-model. Various classes of Hamiltonian density arriving from the two types of R-matrices are found, which also appear as solutions of the constant YBE. We identify the idempotent and nilpotent categories of such constant R-matrices and perform a rank-1 numerical search for the lowest dimension. A summary of the final results reveals general non-Hermitian spin-1/2 chain models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
14.30%
发文量
542
审稿时长
1.9 months
期刊介绍: Publishing 50 issues a year, Journal of Physics A: Mathematical and Theoretical is a major journal of theoretical physics reporting research on the mathematical structures that describe fundamental processes of the physical world and on the analytical, computational and numerical methods for exploring these structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信