{"title":"感知电气环境:通过电子传感器重建机械物体","authors":"Ryan A Palmer, Isaac V Chenchiah, Daniel Robert","doi":"10.1088/1751-8121/ad6f80","DOIUrl":null,"url":null,"abstract":"Increasing empirical evidence suggests that many terrestrial arthropods, such as bees, spiders, and caterpillars, sense electric fields in their environments. This relatively newly discovered sense may play a unique role within their broader sensory ecology, alongside other fundamental senses such as vision, hearing, olfaction, and aero-acoustic sensing. Deflectable hairs are the primary candidate for the reception of electrical stimuli. From the deflections of individually innervated hairs, the arthropod can transduce environmental and ecological information. However, it is unclear what information an animal can elicit from hair receptors and how it relates to their environment. This paper explores how an arthropod may ascertain geometric and electrical information about its environment. Using two-dimensional models, we explore the possibility of electroreceptive object recognition and reconstruction via multiple observations and several deflecting hairs. We analyse how the number of hairs, the observed shape, and the observation path alter the accuracy of the reconstructed representations. The results herein indicate the formidable possibility that geometric information about the environment can be electro-mechanically measured and acquired at a distance.","PeriodicalId":16763,"journal":{"name":"Journal of Physics A: Mathematical and Theoretical","volume":"159 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sensing electrical environments: mechanical object reconstruction via electrosensors\",\"authors\":\"Ryan A Palmer, Isaac V Chenchiah, Daniel Robert\",\"doi\":\"10.1088/1751-8121/ad6f80\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Increasing empirical evidence suggests that many terrestrial arthropods, such as bees, spiders, and caterpillars, sense electric fields in their environments. This relatively newly discovered sense may play a unique role within their broader sensory ecology, alongside other fundamental senses such as vision, hearing, olfaction, and aero-acoustic sensing. Deflectable hairs are the primary candidate for the reception of electrical stimuli. From the deflections of individually innervated hairs, the arthropod can transduce environmental and ecological information. However, it is unclear what information an animal can elicit from hair receptors and how it relates to their environment. This paper explores how an arthropod may ascertain geometric and electrical information about its environment. Using two-dimensional models, we explore the possibility of electroreceptive object recognition and reconstruction via multiple observations and several deflecting hairs. We analyse how the number of hairs, the observed shape, and the observation path alter the accuracy of the reconstructed representations. The results herein indicate the formidable possibility that geometric information about the environment can be electro-mechanically measured and acquired at a distance.\",\"PeriodicalId\":16763,\"journal\":{\"name\":\"Journal of Physics A: Mathematical and Theoretical\",\"volume\":\"159 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics A: Mathematical and Theoretical\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1751-8121/ad6f80\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics A: Mathematical and Theoretical","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1751-8121/ad6f80","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
Sensing electrical environments: mechanical object reconstruction via electrosensors
Increasing empirical evidence suggests that many terrestrial arthropods, such as bees, spiders, and caterpillars, sense electric fields in their environments. This relatively newly discovered sense may play a unique role within their broader sensory ecology, alongside other fundamental senses such as vision, hearing, olfaction, and aero-acoustic sensing. Deflectable hairs are the primary candidate for the reception of electrical stimuli. From the deflections of individually innervated hairs, the arthropod can transduce environmental and ecological information. However, it is unclear what information an animal can elicit from hair receptors and how it relates to their environment. This paper explores how an arthropod may ascertain geometric and electrical information about its environment. Using two-dimensional models, we explore the possibility of electroreceptive object recognition and reconstruction via multiple observations and several deflecting hairs. We analyse how the number of hairs, the observed shape, and the observation path alter the accuracy of the reconstructed representations. The results herein indicate the formidable possibility that geometric information about the environment can be electro-mechanically measured and acquired at a distance.
期刊介绍:
Publishing 50 issues a year, Journal of Physics A: Mathematical and Theoretical is a major journal of theoretical physics reporting research on the mathematical structures that describe fundamental processes of the physical world and on the analytical, computational and numerical methods for exploring these structures.