赫米矩阵诱发的信息扰乱和混沌

IF 2 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
Sven Gnutzmann, Uzy Smilansky
{"title":"赫米矩阵诱发的信息扰乱和混沌","authors":"Sven Gnutzmann, Uzy Smilansky","doi":"10.1088/1751-8121/ad6f7c","DOIUrl":null,"url":null,"abstract":"Given an arbitrary <italic toggle=\"yes\">V</italic> × <italic toggle=\"yes\">V</italic> Hermitian matrix <italic toggle=\"yes\">H</italic>, considered as a finite discrete quantum Hamiltonian, we use methods from graph and ergodic theories to construct a <italic toggle=\"yes\">quantum Poincaré map</italic> at energy <italic toggle=\"yes\">E</italic> and a corresponding stochastic <italic toggle=\"yes\">classical Poincaré–Markov map</italic> at the same energy on an appropriate discrete <italic toggle=\"yes\">phase space</italic>. This phase space <inline-formula>\n<tex-math><?CDATA $\\mathcal{D}$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:mrow><mml:mi>D</mml:mi></mml:mrow></mml:mrow></mml:math><inline-graphic xlink:href=\"aad6f7cieqn1.gif\"></inline-graphic></inline-formula> consists of the directed edges of a graph with <italic toggle=\"yes\">V</italic> vertices that are in one-to-one correspondence with the non-vanishing off-diagonal elements of <italic toggle=\"yes\">H</italic>. The correspondence between quantum Poincaré map and classical Poincaré–Markov map is an alternative to the standard quantum–classical correspondence based on a classical limit <inline-formula>\n<tex-math><?CDATA $\\hbar \\to 0$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:mi>ℏ</mml:mi><mml:mo accent=\"false\" stretchy=\"false\">→</mml:mo><mml:mn>0</mml:mn></mml:mrow></mml:math><inline-graphic xlink:href=\"aad6f7cieqn2.gif\"></inline-graphic></inline-formula>. Most importantly it can be constructed where no such limit exists. Using standard methods from ergodic theory we then proceed to derive an expression for the <italic toggle=\"yes\">Lyapunov exponent</italic> <inline-formula>\n<tex-math><?CDATA $\\Lambda(E)$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:mi mathvariant=\"normal\">Λ</mml:mi><mml:mo stretchy=\"false\">(</mml:mo><mml:mi>E</mml:mi><mml:mo stretchy=\"false\">)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href=\"aad6f7cieqn3.gif\"></inline-graphic></inline-formula> of the classical map. It measures the rate of loss of classical information in the dynamics and relates it to the separation of stochastic <italic toggle=\"yes\">classical trajectories</italic> in the phase space. We suggest that loss of information in the underlying classical dynamics is an indicator for quantum information scrambling.","PeriodicalId":16763,"journal":{"name":"Journal of Physics A: Mathematical and Theoretical","volume":"74 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Information scrambling and chaos induced by a Hermitian matrix\",\"authors\":\"Sven Gnutzmann, Uzy Smilansky\",\"doi\":\"10.1088/1751-8121/ad6f7c\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given an arbitrary <italic toggle=\\\"yes\\\">V</italic> × <italic toggle=\\\"yes\\\">V</italic> Hermitian matrix <italic toggle=\\\"yes\\\">H</italic>, considered as a finite discrete quantum Hamiltonian, we use methods from graph and ergodic theories to construct a <italic toggle=\\\"yes\\\">quantum Poincaré map</italic> at energy <italic toggle=\\\"yes\\\">E</italic> and a corresponding stochastic <italic toggle=\\\"yes\\\">classical Poincaré–Markov map</italic> at the same energy on an appropriate discrete <italic toggle=\\\"yes\\\">phase space</italic>. This phase space <inline-formula>\\n<tex-math><?CDATA $\\\\mathcal{D}$?></tex-math><mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mrow><mml:mi>D</mml:mi></mml:mrow></mml:mrow></mml:math><inline-graphic xlink:href=\\\"aad6f7cieqn1.gif\\\"></inline-graphic></inline-formula> consists of the directed edges of a graph with <italic toggle=\\\"yes\\\">V</italic> vertices that are in one-to-one correspondence with the non-vanishing off-diagonal elements of <italic toggle=\\\"yes\\\">H</italic>. The correspondence between quantum Poincaré map and classical Poincaré–Markov map is an alternative to the standard quantum–classical correspondence based on a classical limit <inline-formula>\\n<tex-math><?CDATA $\\\\hbar \\\\to 0$?></tex-math><mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mi>ℏ</mml:mi><mml:mo accent=\\\"false\\\" stretchy=\\\"false\\\">→</mml:mo><mml:mn>0</mml:mn></mml:mrow></mml:math><inline-graphic xlink:href=\\\"aad6f7cieqn2.gif\\\"></inline-graphic></inline-formula>. Most importantly it can be constructed where no such limit exists. Using standard methods from ergodic theory we then proceed to derive an expression for the <italic toggle=\\\"yes\\\">Lyapunov exponent</italic> <inline-formula>\\n<tex-math><?CDATA $\\\\Lambda(E)$?></tex-math><mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mi mathvariant=\\\"normal\\\">Λ</mml:mi><mml:mo stretchy=\\\"false\\\">(</mml:mo><mml:mi>E</mml:mi><mml:mo stretchy=\\\"false\\\">)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href=\\\"aad6f7cieqn3.gif\\\"></inline-graphic></inline-formula> of the classical map. It measures the rate of loss of classical information in the dynamics and relates it to the separation of stochastic <italic toggle=\\\"yes\\\">classical trajectories</italic> in the phase space. We suggest that loss of information in the underlying classical dynamics is an indicator for quantum information scrambling.\",\"PeriodicalId\":16763,\"journal\":{\"name\":\"Journal of Physics A: Mathematical and Theoretical\",\"volume\":\"74 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics A: Mathematical and Theoretical\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1751-8121/ad6f7c\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics A: Mathematical and Theoretical","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1751-8121/ad6f7c","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

给定一个任意的 V × V 赫米矩阵 H,将其视为有限离散量子哈密顿,我们利用图论和遍历理论的方法,在适当的离散相空间上构建能量 E 的量子波卡列图和相同能量的相应随机经典波卡列-马尔科夫图。这个相空间 D 由一个有 V 个顶点的图的有向边组成,这些顶点与 H 的非消失对角元素一一对应。量子波因卡雷图与经典波因卡雷-马尔科夫图之间的对应关系是基于经典极限ℏ→0 的标准量子-经典对应关系的另一种选择。最重要的是,它可以在不存在这种极限的地方构建。利用遍历理论的标准方法,我们可以推导出经典映射的莱普诺夫指数Λ(E) 的表达式。它衡量了动力学中经典信息的损失率,并将其与相空间中随机经典轨迹的分离联系起来。我们认为,底层经典动力学中的信息损失是量子信息扰乱的一个指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Information scrambling and chaos induced by a Hermitian matrix
Given an arbitrary V × V Hermitian matrix H, considered as a finite discrete quantum Hamiltonian, we use methods from graph and ergodic theories to construct a quantum Poincaré map at energy E and a corresponding stochastic classical Poincaré–Markov map at the same energy on an appropriate discrete phase space. This phase space D consists of the directed edges of a graph with V vertices that are in one-to-one correspondence with the non-vanishing off-diagonal elements of H. The correspondence between quantum Poincaré map and classical Poincaré–Markov map is an alternative to the standard quantum–classical correspondence based on a classical limit 0. Most importantly it can be constructed where no such limit exists. Using standard methods from ergodic theory we then proceed to derive an expression for the Lyapunov exponent Λ(E) of the classical map. It measures the rate of loss of classical information in the dynamics and relates it to the separation of stochastic classical trajectories in the phase space. We suggest that loss of information in the underlying classical dynamics is an indicator for quantum information scrambling.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
14.30%
发文量
542
审稿时长
1.9 months
期刊介绍: Publishing 50 issues a year, Journal of Physics A: Mathematical and Theoretical is a major journal of theoretical physics reporting research on the mathematical structures that describe fundamental processes of the physical world and on the analytical, computational and numerical methods for exploring these structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信