{"title":"通过 GSIS-DSMC 直接间歇耦合对稀薄气体动力学进行多尺度模拟","authors":"Liyan Luo, Lei Wu","doi":"10.1186/s42774-024-00188-y","DOIUrl":null,"url":null,"abstract":"The general synthetic iterative scheme (GSIS) has proven its efficacy in modeling rarefied gas dynamics, where the steady-state solutions are obtained after dozens of iterations of the Boltzmann equation, with minimal numerical dissipation even using large spatial cells. In this paper, the fast convergence and asymptotic-preserving properties of the GSIS are harnessed to remove the limitations of the direct simulation Monte Carlo (DSMC) method. The GSIS, which leverages high-order constitutive relations derived from DSMC, is applied intermittently, which not only rapidly steers the DSMC towards steady state, but also eliminates the requirement that the cell size must be smaller than the molecular mean free path. Several numerical tests have been conducted to validate the accuracy and efficiency of this hybrid GSIS-DSMC approach.","PeriodicalId":33737,"journal":{"name":"Advances in Aerodynamics","volume":"32 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiscale simulation of rarefied gas dynamics via direct intermittent GSIS-DSMC coupling\",\"authors\":\"Liyan Luo, Lei Wu\",\"doi\":\"10.1186/s42774-024-00188-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The general synthetic iterative scheme (GSIS) has proven its efficacy in modeling rarefied gas dynamics, where the steady-state solutions are obtained after dozens of iterations of the Boltzmann equation, with minimal numerical dissipation even using large spatial cells. In this paper, the fast convergence and asymptotic-preserving properties of the GSIS are harnessed to remove the limitations of the direct simulation Monte Carlo (DSMC) method. The GSIS, which leverages high-order constitutive relations derived from DSMC, is applied intermittently, which not only rapidly steers the DSMC towards steady state, but also eliminates the requirement that the cell size must be smaller than the molecular mean free path. Several numerical tests have been conducted to validate the accuracy and efficiency of this hybrid GSIS-DSMC approach.\",\"PeriodicalId\":33737,\"journal\":{\"name\":\"Advances in Aerodynamics\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Aerodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s42774-024-00188-y\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Aerodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s42774-024-00188-y","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Multiscale simulation of rarefied gas dynamics via direct intermittent GSIS-DSMC coupling
The general synthetic iterative scheme (GSIS) has proven its efficacy in modeling rarefied gas dynamics, where the steady-state solutions are obtained after dozens of iterations of the Boltzmann equation, with minimal numerical dissipation even using large spatial cells. In this paper, the fast convergence and asymptotic-preserving properties of the GSIS are harnessed to remove the limitations of the direct simulation Monte Carlo (DSMC) method. The GSIS, which leverages high-order constitutive relations derived from DSMC, is applied intermittently, which not only rapidly steers the DSMC towards steady state, but also eliminates the requirement that the cell size must be smaller than the molecular mean free path. Several numerical tests have been conducted to validate the accuracy and efficiency of this hybrid GSIS-DSMC approach.