{"title":"4HDM 的对称性: II.重排组的扩展","authors":"Jiazhen Shao, Igor P Ivanov, Mikko Korhonen","doi":"10.1088/1751-8121/ad7340","DOIUrl":null,"url":null,"abstract":"We continue classification of finite groups which can be used as symmetry group of the scalar sector of the four-Higgs-doublet model (4HDM). Our objective is to systematically construct non-abelian groups via the group extension procedure, starting from the abelian groups <italic toggle=\"yes\">A</italic> and their automorphism groups <inline-formula>\n<tex-math><?CDATA $\\mathrm{Aut}(A)$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:mrow><mml:mi>Aut</mml:mi></mml:mrow><mml:mo stretchy=\"false\">(</mml:mo><mml:mi>A</mml:mi><mml:mo stretchy=\"false\">)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href=\"aad7340ieqn1.gif\"></inline-graphic></inline-formula>. Previously, we considered all cyclic groups <italic toggle=\"yes\">A</italic> available for the 4HDM scalar sector. Here, we further develop the method and apply it to extensions by the remaining rephasing groups <italic toggle=\"yes\">A</italic>, namely <inline-formula>\n<tex-math><?CDATA $A = \\mathbb{Z}_2\\times\\mathbb{Z}_2$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:mi>A</mml:mi><mml:mo>=</mml:mo><mml:msub><mml:mrow><mml:mi mathvariant=\"double-struck\">Z</mml:mi></mml:mrow><mml:mn>2</mml:mn></mml:msub><mml:mo>×</mml:mo><mml:msub><mml:mrow><mml:mi mathvariant=\"double-struck\">Z</mml:mi></mml:mrow><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math><inline-graphic xlink:href=\"aad7340ieqn2.gif\"></inline-graphic></inline-formula>, <inline-formula>\n<tex-math><?CDATA $\\mathbb{Z}_4\\times \\mathbb{Z}_2$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant=\"double-struck\">Z</mml:mi></mml:mrow><mml:mn>4</mml:mn></mml:msub><mml:mo>×</mml:mo><mml:msub><mml:mrow><mml:mi mathvariant=\"double-struck\">Z</mml:mi></mml:mrow><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math><inline-graphic xlink:href=\"aad7340ieqn3.gif\"></inline-graphic></inline-formula>, and <inline-formula>\n<tex-math><?CDATA $\\mathbb{Z}_2\\times \\mathbb{Z}_2\\times \\mathbb{Z}_2$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant=\"double-struck\">Z</mml:mi></mml:mrow><mml:mn>2</mml:mn></mml:msub><mml:mo>×</mml:mo><mml:msub><mml:mrow><mml:mi mathvariant=\"double-struck\">Z</mml:mi></mml:mrow><mml:mn>2</mml:mn></mml:msub><mml:mo>×</mml:mo><mml:msub><mml:mrow><mml:mi mathvariant=\"double-struck\">Z</mml:mi></mml:mrow><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math><inline-graphic xlink:href=\"aad7340ieqn4.gif\"></inline-graphic></inline-formula>. As <inline-formula>\n<tex-math><?CDATA $\\mathrm{Aut}(A)$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:mrow><mml:mi>Aut</mml:mi></mml:mrow><mml:mo stretchy=\"false\">(</mml:mo><mml:mi>A</mml:mi><mml:mo stretchy=\"false\">)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href=\"aad7340ieqn5.gif\"></inline-graphic></inline-formula> grows, the procedure becomes more laborious, but we prove an isomorphism theorem which helps classify all the options. We also comment on what remains to be done to complete the classification of all finite non-abelian groups realizable in the 4HDM scalar sector without accidental continuous symmetries.","PeriodicalId":16763,"journal":{"name":"Journal of Physics A: Mathematical and Theoretical","volume":"1 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Symmetries for the 4HDM: II. Extensions by rephasing groups\",\"authors\":\"Jiazhen Shao, Igor P Ivanov, Mikko Korhonen\",\"doi\":\"10.1088/1751-8121/ad7340\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We continue classification of finite groups which can be used as symmetry group of the scalar sector of the four-Higgs-doublet model (4HDM). Our objective is to systematically construct non-abelian groups via the group extension procedure, starting from the abelian groups <italic toggle=\\\"yes\\\">A</italic> and their automorphism groups <inline-formula>\\n<tex-math><?CDATA $\\\\mathrm{Aut}(A)$?></tex-math><mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mrow><mml:mi>Aut</mml:mi></mml:mrow><mml:mo stretchy=\\\"false\\\">(</mml:mo><mml:mi>A</mml:mi><mml:mo stretchy=\\\"false\\\">)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href=\\\"aad7340ieqn1.gif\\\"></inline-graphic></inline-formula>. Previously, we considered all cyclic groups <italic toggle=\\\"yes\\\">A</italic> available for the 4HDM scalar sector. Here, we further develop the method and apply it to extensions by the remaining rephasing groups <italic toggle=\\\"yes\\\">A</italic>, namely <inline-formula>\\n<tex-math><?CDATA $A = \\\\mathbb{Z}_2\\\\times\\\\mathbb{Z}_2$?></tex-math><mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mi>A</mml:mi><mml:mo>=</mml:mo><mml:msub><mml:mrow><mml:mi mathvariant=\\\"double-struck\\\">Z</mml:mi></mml:mrow><mml:mn>2</mml:mn></mml:msub><mml:mo>×</mml:mo><mml:msub><mml:mrow><mml:mi mathvariant=\\\"double-struck\\\">Z</mml:mi></mml:mrow><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math><inline-graphic xlink:href=\\\"aad7340ieqn2.gif\\\"></inline-graphic></inline-formula>, <inline-formula>\\n<tex-math><?CDATA $\\\\mathbb{Z}_4\\\\times \\\\mathbb{Z}_2$?></tex-math><mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant=\\\"double-struck\\\">Z</mml:mi></mml:mrow><mml:mn>4</mml:mn></mml:msub><mml:mo>×</mml:mo><mml:msub><mml:mrow><mml:mi mathvariant=\\\"double-struck\\\">Z</mml:mi></mml:mrow><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math><inline-graphic xlink:href=\\\"aad7340ieqn3.gif\\\"></inline-graphic></inline-formula>, and <inline-formula>\\n<tex-math><?CDATA $\\\\mathbb{Z}_2\\\\times \\\\mathbb{Z}_2\\\\times \\\\mathbb{Z}_2$?></tex-math><mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant=\\\"double-struck\\\">Z</mml:mi></mml:mrow><mml:mn>2</mml:mn></mml:msub><mml:mo>×</mml:mo><mml:msub><mml:mrow><mml:mi mathvariant=\\\"double-struck\\\">Z</mml:mi></mml:mrow><mml:mn>2</mml:mn></mml:msub><mml:mo>×</mml:mo><mml:msub><mml:mrow><mml:mi mathvariant=\\\"double-struck\\\">Z</mml:mi></mml:mrow><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math><inline-graphic xlink:href=\\\"aad7340ieqn4.gif\\\"></inline-graphic></inline-formula>. As <inline-formula>\\n<tex-math><?CDATA $\\\\mathrm{Aut}(A)$?></tex-math><mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mrow><mml:mi>Aut</mml:mi></mml:mrow><mml:mo stretchy=\\\"false\\\">(</mml:mo><mml:mi>A</mml:mi><mml:mo stretchy=\\\"false\\\">)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href=\\\"aad7340ieqn5.gif\\\"></inline-graphic></inline-formula> grows, the procedure becomes more laborious, but we prove an isomorphism theorem which helps classify all the options. We also comment on what remains to be done to complete the classification of all finite non-abelian groups realizable in the 4HDM scalar sector without accidental continuous symmetries.\",\"PeriodicalId\":16763,\"journal\":{\"name\":\"Journal of Physics A: Mathematical and Theoretical\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics A: Mathematical and Theoretical\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1751-8121/ad7340\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics A: Mathematical and Theoretical","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1751-8121/ad7340","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0
摘要
我们继续对可用作四希格斯双重模型(4HDM)标量部门对称群的有限群进行分类。我们的目标是通过群扩展程序,从非阿贝尔群 A 及其自变群 Aut(A) 开始,系统地构造非阿贝尔群。在此之前,我们考虑了 4HDM 标量扇形的所有循环群 A。在这里,我们进一步发展了这一方法,并将其应用于剩余的重合群 A 的扩展,即 A=Z2×Z2、Z4×Z2 和 Z2×Z2×Z2。随着 Aut(A) 的增长,这一过程变得更加费力,但我们证明了一个同构定理,它有助于对所有选项进行分类。我们还评论了要完成所有可在 4HDM 标量扇形中实现的有限非阿贝尔群的分类,而不出现意外的连续对称性,还有哪些工作要做。
Symmetries for the 4HDM: II. Extensions by rephasing groups
We continue classification of finite groups which can be used as symmetry group of the scalar sector of the four-Higgs-doublet model (4HDM). Our objective is to systematically construct non-abelian groups via the group extension procedure, starting from the abelian groups A and their automorphism groups Aut(A). Previously, we considered all cyclic groups A available for the 4HDM scalar sector. Here, we further develop the method and apply it to extensions by the remaining rephasing groups A, namely A=Z2×Z2, Z4×Z2, and Z2×Z2×Z2. As Aut(A) grows, the procedure becomes more laborious, but we prove an isomorphism theorem which helps classify all the options. We also comment on what remains to be done to complete the classification of all finite non-abelian groups realizable in the 4HDM scalar sector without accidental continuous symmetries.
期刊介绍:
Publishing 50 issues a year, Journal of Physics A: Mathematical and Theoretical is a major journal of theoretical physics reporting research on the mathematical structures that describe fundamental processes of the physical world and on the analytical, computational and numerical methods for exploring these structures.