Mohammed Ahrami, Zakaria El Allali, Evans M Harrell II, James B Kennedy
{"title":"优化量子图的基本特征值间隙","authors":"Mohammed Ahrami, Zakaria El Allali, Evans M Harrell II, James B Kennedy","doi":"10.1088/1751-8121/ad6410","DOIUrl":null,"url":null,"abstract":"We study the problem of minimizing or maximizing the fundamental spectral gap of Schrödinger operators on metric graphs with either a convex potential or a ‘single-well’ potential on an appropriate specified subset. (In the case of metric trees, such a subset can be the entire graph.) In the convex case we find that the minimizing and maximizing potentials are piecewise linear with only a finite number of points of non-smoothness, but give examples showing that the optimal potentials need not be constant. This is a significant departure from the usual scenarios on intervals and domains where the constant potential is typically minimizing. In the single-well case we show that the optimal potentials are piecewise constant with a finite number of jumps, and in both cases give an explicit estimate on the number of points of non-smoothness, respectively jumps, the minimizing potential can have. Furthermore, we show that, unlike on domains, it is not generally possible to find nontrivial bounds on the fundamental gap in terms of the diameter of the graph alone, within the given classes.","PeriodicalId":16763,"journal":{"name":"Journal of Physics A: Mathematical and Theoretical","volume":"25 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing the fundamental eigenvalue gap of quantum graphs\",\"authors\":\"Mohammed Ahrami, Zakaria El Allali, Evans M Harrell II, James B Kennedy\",\"doi\":\"10.1088/1751-8121/ad6410\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the problem of minimizing or maximizing the fundamental spectral gap of Schrödinger operators on metric graphs with either a convex potential or a ‘single-well’ potential on an appropriate specified subset. (In the case of metric trees, such a subset can be the entire graph.) In the convex case we find that the minimizing and maximizing potentials are piecewise linear with only a finite number of points of non-smoothness, but give examples showing that the optimal potentials need not be constant. This is a significant departure from the usual scenarios on intervals and domains where the constant potential is typically minimizing. In the single-well case we show that the optimal potentials are piecewise constant with a finite number of jumps, and in both cases give an explicit estimate on the number of points of non-smoothness, respectively jumps, the minimizing potential can have. Furthermore, we show that, unlike on domains, it is not generally possible to find nontrivial bounds on the fundamental gap in terms of the diameter of the graph alone, within the given classes.\",\"PeriodicalId\":16763,\"journal\":{\"name\":\"Journal of Physics A: Mathematical and Theoretical\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics A: Mathematical and Theoretical\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1751-8121/ad6410\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics A: Mathematical and Theoretical","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1751-8121/ad6410","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
Optimizing the fundamental eigenvalue gap of quantum graphs
We study the problem of minimizing or maximizing the fundamental spectral gap of Schrödinger operators on metric graphs with either a convex potential or a ‘single-well’ potential on an appropriate specified subset. (In the case of metric trees, such a subset can be the entire graph.) In the convex case we find that the minimizing and maximizing potentials are piecewise linear with only a finite number of points of non-smoothness, but give examples showing that the optimal potentials need not be constant. This is a significant departure from the usual scenarios on intervals and domains where the constant potential is typically minimizing. In the single-well case we show that the optimal potentials are piecewise constant with a finite number of jumps, and in both cases give an explicit estimate on the number of points of non-smoothness, respectively jumps, the minimizing potential can have. Furthermore, we show that, unlike on domains, it is not generally possible to find nontrivial bounds on the fundamental gap in terms of the diameter of the graph alone, within the given classes.
期刊介绍:
Publishing 50 issues a year, Journal of Physics A: Mathematical and Theoretical is a major journal of theoretical physics reporting research on the mathematical structures that describe fundamental processes of the physical world and on the analytical, computational and numerical methods for exploring these structures.