{"title":"通用 f(黎曼)引力中的约束和时间演化","authors":"Emel Altas, Bayram Tekin","doi":"10.1088/1751-8121/ad74bc","DOIUrl":null,"url":null,"abstract":"We give a detailed canonical analysis of the <italic toggle=\"yes\">n</italic>-dimensional <italic toggle=\"yes\">f</italic>(Riemann) gravity, correcting the earlier results in the literature. We also write the field equations in the Fischer–Marsden form which is amenable to identifying the non-stationary energy on a spacelike hypersurface. We give pure <italic toggle=\"yes\">R</italic><sup>2</sup> and <inline-formula>\n<tex-math><?CDATA $R_{\\mu\\nu}R^{\\mu\\nu}$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:msub><mml:mi>R</mml:mi><mml:mrow><mml:mi>μ</mml:mi><mml:mi>ν</mml:mi></mml:mrow></mml:msub><mml:msup><mml:mi>R</mml:mi><mml:mrow><mml:mi>μ</mml:mi><mml:mi>ν</mml:mi></mml:mrow></mml:msup></mml:mrow></mml:math><inline-graphic xlink:href=\"aad74bcieqn1.gif\"></inline-graphic></inline-formula> theories as examples.","PeriodicalId":16763,"journal":{"name":"Journal of Physics A: Mathematical and Theoretical","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Constraints and time evolution in generic f(Riemann) gravity\",\"authors\":\"Emel Altas, Bayram Tekin\",\"doi\":\"10.1088/1751-8121/ad74bc\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give a detailed canonical analysis of the <italic toggle=\\\"yes\\\">n</italic>-dimensional <italic toggle=\\\"yes\\\">f</italic>(Riemann) gravity, correcting the earlier results in the literature. We also write the field equations in the Fischer–Marsden form which is amenable to identifying the non-stationary energy on a spacelike hypersurface. We give pure <italic toggle=\\\"yes\\\">R</italic><sup>2</sup> and <inline-formula>\\n<tex-math><?CDATA $R_{\\\\mu\\\\nu}R^{\\\\mu\\\\nu}$?></tex-math><mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:msub><mml:mi>R</mml:mi><mml:mrow><mml:mi>μ</mml:mi><mml:mi>ν</mml:mi></mml:mrow></mml:msub><mml:msup><mml:mi>R</mml:mi><mml:mrow><mml:mi>μ</mml:mi><mml:mi>ν</mml:mi></mml:mrow></mml:msup></mml:mrow></mml:math><inline-graphic xlink:href=\\\"aad74bcieqn1.gif\\\"></inline-graphic></inline-formula> theories as examples.\",\"PeriodicalId\":16763,\"journal\":{\"name\":\"Journal of Physics A: Mathematical and Theoretical\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics A: Mathematical and Theoretical\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1751-8121/ad74bc\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics A: Mathematical and Theoretical","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1751-8121/ad74bc","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0
摘要
我们对 n 维 f(黎曼)引力进行了详细的规范分析,修正了文献中的早期结果。我们还以费舍尔-马斯登形式写出了场方程,这有利于识别空间似超曲面上的非稳态能量。我们给出了纯 R2 和 RμνRμν 理论作为例子。
Constraints and time evolution in generic f(Riemann) gravity
We give a detailed canonical analysis of the n-dimensional f(Riemann) gravity, correcting the earlier results in the literature. We also write the field equations in the Fischer–Marsden form which is amenable to identifying the non-stationary energy on a spacelike hypersurface. We give pure R2 and RμνRμν theories as examples.
期刊介绍:
Publishing 50 issues a year, Journal of Physics A: Mathematical and Theoretical is a major journal of theoretical physics reporting research on the mathematical structures that describe fundamental processes of the physical world and on the analytical, computational and numerical methods for exploring these structures.