$$\{K_4,C_5\}$ 和 $$\{K_4,C_6\}$ 的平面图兰数

IF 0.6 4区 数学 Q3 MATHEMATICS
Ervin Győri, Alan Li, Runtian Zhou
{"title":"$$\\{K_4,C_5\\}$ 和 $$\\{K_4,C_6\\}$ 的平面图兰数","authors":"Ervin Győri, Alan Li, Runtian Zhou","doi":"10.1007/s00373-024-02830-4","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\(\\mathcal {H}\\)</span> be a set of graphs. The planar Turán number, <span>\\(ex_\\mathcal {P}(n,\\mathcal {H})\\)</span>, is the maximum number of edges in an <i>n</i>-vertex planar graph which does not contain any member of <span>\\(\\mathcal {H}\\)</span> as a subgraph. When <span>\\(\\mathcal {H}=\\{H\\}\\)</span> has only one element, we usually write <span>\\(ex_\\mathcal {P}(n,H)\\)</span> instead. The study of extremal planar graphs was initiated by Dowden (J Graph Theory 83(3):213–230, 2016). He obtained sharp upper bounds for both <span>\\(ex_\\mathcal {P}(n,C_5)\\)</span> and <span>\\(ex_\\mathcal {P}(n,K_4)\\)</span>. Later on, sharp upper bounds were proved for <span>\\(ex_\\mathcal {P}(n,C_6)\\)</span> and <span>\\(ex_\\mathcal {P}(n,C_7)\\)</span>. In this paper, we show that <span>\\(ex_\\mathcal {P}(n,\\{K_4,C_5\\})\\le {15\\over 7}(n-2)\\)</span> and <span>\\(ex_\\mathcal {P}(n,\\{K_4,C_6\\})\\le {7\\over 3}(n-2)\\)</span>. We also give constructions which show the bounds are sharp for infinitely many <i>n</i>.</p>","PeriodicalId":12811,"journal":{"name":"Graphs and Combinatorics","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Planar Turán Number of $$\\\\{K_4,C_5\\\\}$$ and $$\\\\{K_4,C_6\\\\}$$\",\"authors\":\"Ervin Győri, Alan Li, Runtian Zhou\",\"doi\":\"10.1007/s00373-024-02830-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span>\\\\(\\\\mathcal {H}\\\\)</span> be a set of graphs. The planar Turán number, <span>\\\\(ex_\\\\mathcal {P}(n,\\\\mathcal {H})\\\\)</span>, is the maximum number of edges in an <i>n</i>-vertex planar graph which does not contain any member of <span>\\\\(\\\\mathcal {H}\\\\)</span> as a subgraph. When <span>\\\\(\\\\mathcal {H}=\\\\{H\\\\}\\\\)</span> has only one element, we usually write <span>\\\\(ex_\\\\mathcal {P}(n,H)\\\\)</span> instead. The study of extremal planar graphs was initiated by Dowden (J Graph Theory 83(3):213–230, 2016). He obtained sharp upper bounds for both <span>\\\\(ex_\\\\mathcal {P}(n,C_5)\\\\)</span> and <span>\\\\(ex_\\\\mathcal {P}(n,K_4)\\\\)</span>. Later on, sharp upper bounds were proved for <span>\\\\(ex_\\\\mathcal {P}(n,C_6)\\\\)</span> and <span>\\\\(ex_\\\\mathcal {P}(n,C_7)\\\\)</span>. In this paper, we show that <span>\\\\(ex_\\\\mathcal {P}(n,\\\\{K_4,C_5\\\\})\\\\le {15\\\\over 7}(n-2)\\\\)</span> and <span>\\\\(ex_\\\\mathcal {P}(n,\\\\{K_4,C_6\\\\})\\\\le {7\\\\over 3}(n-2)\\\\)</span>. We also give constructions which show the bounds are sharp for infinitely many <i>n</i>.</p>\",\"PeriodicalId\":12811,\"journal\":{\"name\":\"Graphs and Combinatorics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Graphs and Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00373-024-02830-4\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphs and Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00373-024-02830-4","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

让 \(\mathcal {H}\) 是一组图。平面图兰数(ex_\mathcal {P}(n,\mathcal {H})\)是一个 n 个顶点的平面图中不包含作为子图的\(\mathcal {H}\)的任何成员的最大边数。当 \(\mathcal {H}=\{H\}\) 只有一个元素时,我们通常写成 \(ex_\mathcal {P}(n,H)\) 。极值平面图的研究是由 Dowden 发起的(《图论》83(3):213-230,2016 年)。他得到了 \(ex_\mathcal {P}(n,C_5)\) 和 \(ex_\mathcal {P}(n,K_4)\) 的尖锐上界。后来,我们证明了 \(ex_\mathcal {P}(n,C_6)\) 和 \(ex_\mathcal {P}(n,C_7)\) 的尖锐上限。在本文中,我们证明了(ex_\mathcal {P}(n,\{K_4,C_5\})\le {15/over7}(n-2))和(ex_\mathcal {P}(n,\{K_4,C_6\})\le {7/over3}(n-2))。我们还给出了一些构造,表明这些界限对于无穷多的 n 都是尖锐的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The Planar Turán Number of $$\{K_4,C_5\}$$ and $$\{K_4,C_6\}$$

The Planar Turán Number of $$\{K_4,C_5\}$$ and $$\{K_4,C_6\}$$

Let \(\mathcal {H}\) be a set of graphs. The planar Turán number, \(ex_\mathcal {P}(n,\mathcal {H})\), is the maximum number of edges in an n-vertex planar graph which does not contain any member of \(\mathcal {H}\) as a subgraph. When \(\mathcal {H}=\{H\}\) has only one element, we usually write \(ex_\mathcal {P}(n,H)\) instead. The study of extremal planar graphs was initiated by Dowden (J Graph Theory 83(3):213–230, 2016). He obtained sharp upper bounds for both \(ex_\mathcal {P}(n,C_5)\) and \(ex_\mathcal {P}(n,K_4)\). Later on, sharp upper bounds were proved for \(ex_\mathcal {P}(n,C_6)\) and \(ex_\mathcal {P}(n,C_7)\). In this paper, we show that \(ex_\mathcal {P}(n,\{K_4,C_5\})\le {15\over 7}(n-2)\) and \(ex_\mathcal {P}(n,\{K_4,C_6\})\le {7\over 3}(n-2)\). We also give constructions which show the bounds are sharp for infinitely many n.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Graphs and Combinatorics
Graphs and Combinatorics 数学-数学
CiteScore
1.00
自引率
14.30%
发文量
160
审稿时长
6 months
期刊介绍: Graphs and Combinatorics is an international journal devoted to research concerning all aspects of combinatorial mathematics. In addition to original research papers, the journal also features survey articles from authors invited by the editorial board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信