计算有界树宽图中韧性的高效算法

IF 0.6 4区 数学 Q3 MATHEMATICS
Gyula Y. Katona, Humara Khan
{"title":"计算有界树宽图中韧性的高效算法","authors":"Gyula Y. Katona, Humara Khan","doi":"10.1007/s00373-024-02828-y","DOIUrl":null,"url":null,"abstract":"<p>Let <i>t</i> be a positive real number. A graph is called <i>t</i>-<i>tough</i> if the removal of any vertex set <i>S</i> that disconnects the graph leaves at most |<i>S</i>|/<i>t</i> components. The toughness of a graph is the largest <i>t</i> for which the graph is <i>t</i>-tough. We prove that toughness is fixed-parameter tractable parameterized with the treewidth. More precisely, we give an algorithm to compute the toughness of a graph <i>G</i> with running time <span>\\({\\mathcal {O}}(|V(G)|^3\\cdot \\textrm{tw}(G)^{2\\textrm{tw}(G)})\\)</span> where <span>\\(\\textrm{tw}(G)\\)</span> is the treewidth. If the treewidth is bounded by a constant, then this is a polynomial algorithm.</p>","PeriodicalId":12811,"journal":{"name":"Graphs and Combinatorics","volume":"1 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Efficient Algorithm to Compute the Toughness in Graphs with Bounded Treewidth\",\"authors\":\"Gyula Y. Katona, Humara Khan\",\"doi\":\"10.1007/s00373-024-02828-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <i>t</i> be a positive real number. A graph is called <i>t</i>-<i>tough</i> if the removal of any vertex set <i>S</i> that disconnects the graph leaves at most |<i>S</i>|/<i>t</i> components. The toughness of a graph is the largest <i>t</i> for which the graph is <i>t</i>-tough. We prove that toughness is fixed-parameter tractable parameterized with the treewidth. More precisely, we give an algorithm to compute the toughness of a graph <i>G</i> with running time <span>\\\\({\\\\mathcal {O}}(|V(G)|^3\\\\cdot \\\\textrm{tw}(G)^{2\\\\textrm{tw}(G)})\\\\)</span> where <span>\\\\(\\\\textrm{tw}(G)\\\\)</span> is the treewidth. If the treewidth is bounded by a constant, then this is a polynomial algorithm.</p>\",\"PeriodicalId\":12811,\"journal\":{\"name\":\"Graphs and Combinatorics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Graphs and Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00373-024-02828-y\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphs and Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00373-024-02828-y","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设 t 为正实数。如果移除任何使图形断开的顶点集 S,最多只能留下 |S|/t 个分量,则称该图形为 t-韧图。图的韧度是图具有 t-韧度的最大 t。我们证明了韧性是可以用树宽作为固定参数的。更准确地说,我们给出了一种计算图 G 的韧性的算法,其运行时间为 \({mathcal {O}}(|V(G)|^3\cdot \textrm{tw}(G)^{2\textrm{tw}(G)}) 其中 \(\textrm{tw}(G)\) 是树宽。如果树宽以常数为界,那么这是一种多项式算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Efficient Algorithm to Compute the Toughness in Graphs with Bounded Treewidth

Let t be a positive real number. A graph is called t-tough if the removal of any vertex set S that disconnects the graph leaves at most |S|/t components. The toughness of a graph is the largest t for which the graph is t-tough. We prove that toughness is fixed-parameter tractable parameterized with the treewidth. More precisely, we give an algorithm to compute the toughness of a graph G with running time \({\mathcal {O}}(|V(G)|^3\cdot \textrm{tw}(G)^{2\textrm{tw}(G)})\) where \(\textrm{tw}(G)\) is the treewidth. If the treewidth is bounded by a constant, then this is a polynomial algorithm.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Graphs and Combinatorics
Graphs and Combinatorics 数学-数学
CiteScore
1.00
自引率
14.30%
发文量
160
审稿时长
6 months
期刊介绍: Graphs and Combinatorics is an international journal devoted to research concerning all aspects of combinatorial mathematics. In addition to original research papers, the journal also features survey articles from authors invited by the editorial board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信