测定脂多糖运输的初始速率

Matthew Nava, Sebastian J. Rowe, Rebecca J. Taylor, Daniel Kahne, Daniel G. Nocera
{"title":"测定脂多糖运输的初始速率","authors":"Matthew Nava, Sebastian J. Rowe, Rebecca J. Taylor, Daniel Kahne, Daniel G. Nocera","doi":"10.1021/acs.biochem.4c00379","DOIUrl":null,"url":null,"abstract":"Nonvesicular lipid trafficking pathways are an important process in every domain of life. The mechanisms of these processes are poorly understood in part due to the difficulty in kinetic characterization. One important class of glycolipids, lipopolysaccharides (LPS), are the primary lipidic component of the outer membrane of Gram-negative bacteria. LPS are synthesized in the inner membrane and then trafficked to the cell surface by the <b>l</b>ipo<b>p</b>olysaccharide <b>t</b>ransport proteins, <u>Lpt</u>B<sub>2</sub>FGCADE. By characterizing the interaction of a fluorescent probe and LPS, we establish a quantitative assay to monitor the flux of LPS between proteoliposomes on the time scale of seconds. We then incorporate photocaged ATP into this system, which allows for light-based control of the initiation of LPS transport. This control allows us to measure the initial rate of LPS transport (3.0 min<sup>–1</sup> per LptDE). We also find that the rate of LPS transport by the Lpt complex is independent of the structure of LPS. In contrast, we find the rate of LPS transport is dependent on the proper function of the LptDE complex. Mutants of the outer membrane Lpt components, LptDE, that cause defective LPS assembly in live cells display attenuated transport rates and slower ATP hydrolysis compared to wild type proteins. Analysis of these mutants reveals that the rates of ATP hydrolysis and LPS transport are correlated such that 1.2 ± 0.2 ATP are hydrolyzed for each LPS transported. This correlation suggests a model where the outer membrane components ensure the coupling of ATP hydrolysis and LPS transport by stabilizing a transport-active state of the Lpt bridge.","PeriodicalId":501642,"journal":{"name":"Biochemistry","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Determination of Initial Rates of Lipopolysaccharide Transport\",\"authors\":\"Matthew Nava, Sebastian J. Rowe, Rebecca J. Taylor, Daniel Kahne, Daniel G. Nocera\",\"doi\":\"10.1021/acs.biochem.4c00379\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nonvesicular lipid trafficking pathways are an important process in every domain of life. The mechanisms of these processes are poorly understood in part due to the difficulty in kinetic characterization. One important class of glycolipids, lipopolysaccharides (LPS), are the primary lipidic component of the outer membrane of Gram-negative bacteria. LPS are synthesized in the inner membrane and then trafficked to the cell surface by the <b>l</b>ipo<b>p</b>olysaccharide <b>t</b>ransport proteins, <u>Lpt</u>B<sub>2</sub>FGCADE. By characterizing the interaction of a fluorescent probe and LPS, we establish a quantitative assay to monitor the flux of LPS between proteoliposomes on the time scale of seconds. We then incorporate photocaged ATP into this system, which allows for light-based control of the initiation of LPS transport. This control allows us to measure the initial rate of LPS transport (3.0 min<sup>–1</sup> per LptDE). We also find that the rate of LPS transport by the Lpt complex is independent of the structure of LPS. In contrast, we find the rate of LPS transport is dependent on the proper function of the LptDE complex. Mutants of the outer membrane Lpt components, LptDE, that cause defective LPS assembly in live cells display attenuated transport rates and slower ATP hydrolysis compared to wild type proteins. Analysis of these mutants reveals that the rates of ATP hydrolysis and LPS transport are correlated such that 1.2 ± 0.2 ATP are hydrolyzed for each LPS transported. This correlation suggests a model where the outer membrane components ensure the coupling of ATP hydrolysis and LPS transport by stabilizing a transport-active state of the Lpt bridge.\",\"PeriodicalId\":501642,\"journal\":{\"name\":\"Biochemistry\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.biochem.4c00379\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acs.biochem.4c00379","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

非囊脂质转运途径是生命各个领域中的一个重要过程。人们对这些过程的机制知之甚少,部分原因是难以确定动力学特征。脂多糖(LPS)是一类重要的糖脂,是革兰氏阴性细菌外膜的主要脂质成分。LPS 在内膜合成,然后通过脂多糖转运蛋白 LptB2FGCADE 转运到细胞表面。通过描述荧光探针与 LPS 的相互作用,我们建立了一种定量检测方法,可在几秒钟的时间尺度内监测 LPS 在蛋白脂质体之间的流动。然后,我们在该系统中加入了光电编码 ATP,从而可以用光来控制 LPS 运输的启动。通过这种控制,我们可以测量 LPS 运输的初始速率(每 LptDE 3.0 min-1)。我们还发现,Lpt 复合物的 LPS 转运速率与 LPS 的结构无关。相反,我们发现 LPS 的转运速率取决于 LptDE 复合物的正常功能。与野生型蛋白相比,导致活细胞中 LPS 组装缺陷的外膜 Lpt 成分 LptDE 突变体显示出衰减的转运速率和较慢的 ATP 水解速度。对这些突变体的分析表明,ATP 的水解速率与 LPS 的运输速率是相关的,即每运输一个 LPS 就会水解 1.2 ± 0.2 ATP。这种相关性表明,外膜成分可通过稳定 Lpt 桥的运输活性状态来确保 ATP 水解和 LPS 运输的耦合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Determination of Initial Rates of Lipopolysaccharide Transport

Determination of Initial Rates of Lipopolysaccharide Transport
Nonvesicular lipid trafficking pathways are an important process in every domain of life. The mechanisms of these processes are poorly understood in part due to the difficulty in kinetic characterization. One important class of glycolipids, lipopolysaccharides (LPS), are the primary lipidic component of the outer membrane of Gram-negative bacteria. LPS are synthesized in the inner membrane and then trafficked to the cell surface by the lipopolysaccharide transport proteins, LptB2FGCADE. By characterizing the interaction of a fluorescent probe and LPS, we establish a quantitative assay to monitor the flux of LPS between proteoliposomes on the time scale of seconds. We then incorporate photocaged ATP into this system, which allows for light-based control of the initiation of LPS transport. This control allows us to measure the initial rate of LPS transport (3.0 min–1 per LptDE). We also find that the rate of LPS transport by the Lpt complex is independent of the structure of LPS. In contrast, we find the rate of LPS transport is dependent on the proper function of the LptDE complex. Mutants of the outer membrane Lpt components, LptDE, that cause defective LPS assembly in live cells display attenuated transport rates and slower ATP hydrolysis compared to wild type proteins. Analysis of these mutants reveals that the rates of ATP hydrolysis and LPS transport are correlated such that 1.2 ± 0.2 ATP are hydrolyzed for each LPS transported. This correlation suggests a model where the outer membrane components ensure the coupling of ATP hydrolysis and LPS transport by stabilizing a transport-active state of the Lpt bridge.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信