论可满足 k-CSP 的可逼近性V

Amey Bhangale, Subhash Khot, Dor Minzer
{"title":"论可满足 k-CSP 的可逼近性V","authors":"Amey Bhangale, Subhash Khot, Dor Minzer","doi":"arxiv-2408.15377","DOIUrl":null,"url":null,"abstract":"We propose a framework of algorithm vs. hardness for all Max-CSPs and\ndemonstrate it for a large class of predicates. This framework extends the work\nof Raghavendra [STOC, 2008], who showed a similar result for almost satisfiable\nMax-CSPs. Our framework is based on a new hybrid approximation algorithm, which uses a\ncombination of the Gaussian elimination technique (i.e., solving a system of\nlinear equations over an Abelian group) and the semidefinite programming\nrelaxation. We complement our algorithm with a matching dictator vs.\nquasirandom test that has perfect completeness. The analysis of our dictator vs. quasirandom test is based on a novel\ninvariance principle, which we call the mixed invariance principle. Our mixed\ninvariance principle is an extension of the invariance principle of Mossel,\nO'Donnell and Oleszkiewicz [Annals of Mathematics, 2010] which plays a crucial\nrole in Raghavendra's work. The mixed invariance principle allows one to relate\n3-wise correlations over discrete probability spaces with expectations over\nspaces that are a mixture of Guassian spaces and Abelian groups, and may be of\nindependent interest.","PeriodicalId":501024,"journal":{"name":"arXiv - CS - Computational Complexity","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Approximability of Satisfiable k-CSPs: V\",\"authors\":\"Amey Bhangale, Subhash Khot, Dor Minzer\",\"doi\":\"arxiv-2408.15377\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a framework of algorithm vs. hardness for all Max-CSPs and\\ndemonstrate it for a large class of predicates. This framework extends the work\\nof Raghavendra [STOC, 2008], who showed a similar result for almost satisfiable\\nMax-CSPs. Our framework is based on a new hybrid approximation algorithm, which uses a\\ncombination of the Gaussian elimination technique (i.e., solving a system of\\nlinear equations over an Abelian group) and the semidefinite programming\\nrelaxation. We complement our algorithm with a matching dictator vs.\\nquasirandom test that has perfect completeness. The analysis of our dictator vs. quasirandom test is based on a novel\\ninvariance principle, which we call the mixed invariance principle. Our mixed\\ninvariance principle is an extension of the invariance principle of Mossel,\\nO'Donnell and Oleszkiewicz [Annals of Mathematics, 2010] which plays a crucial\\nrole in Raghavendra's work. The mixed invariance principle allows one to relate\\n3-wise correlations over discrete probability spaces with expectations over\\nspaces that are a mixture of Guassian spaces and Abelian groups, and may be of\\nindependent interest.\",\"PeriodicalId\":501024,\"journal\":{\"name\":\"arXiv - CS - Computational Complexity\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Computational Complexity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.15377\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.15377","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一个针对所有 Max-CSP 的算法与硬度框架,并针对一大类谓词进行了演示。这个框架扩展了 Raghavendra [STOC, 2008]的工作,他曾为几乎可满足的 Max-CSP 展示过类似的结果。我们的框架基于一种新的混合近似算法,该算法综合运用了高斯消元技术(即求解阿贝尔群的线性方程组)和半定式编程松弛法。我们用具有完美完备性的匹配独裁者与准随机测试来补充我们的算法。独裁者与准随机测试的分析基于一个新颖的不变性原理,我们称之为混合不变性原理。我们的混合不变性原理是 Mossel、O'Donnell 和 Oleszkiewicz [Annals of Mathematics, 2010] 的不变性原理的扩展,该原理在 Raghavendra 的工作中发挥了关键作用。混合不变性原理允许人们将离散概率空间上的3-智相关性与瓜西亚空间和阿贝尔群的混合期望超空间联系起来,并且可能具有独立的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Approximability of Satisfiable k-CSPs: V
We propose a framework of algorithm vs. hardness for all Max-CSPs and demonstrate it for a large class of predicates. This framework extends the work of Raghavendra [STOC, 2008], who showed a similar result for almost satisfiable Max-CSPs. Our framework is based on a new hybrid approximation algorithm, which uses a combination of the Gaussian elimination technique (i.e., solving a system of linear equations over an Abelian group) and the semidefinite programming relaxation. We complement our algorithm with a matching dictator vs. quasirandom test that has perfect completeness. The analysis of our dictator vs. quasirandom test is based on a novel invariance principle, which we call the mixed invariance principle. Our mixed invariance principle is an extension of the invariance principle of Mossel, O'Donnell and Oleszkiewicz [Annals of Mathematics, 2010] which plays a crucial role in Raghavendra's work. The mixed invariance principle allows one to relate 3-wise correlations over discrete probability spaces with expectations over spaces that are a mixture of Guassian spaces and Abelian groups, and may be of independent interest.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信