部分矩阵乘法和加权矩阵乘法

Péter Vrana
{"title":"部分矩阵乘法和加权矩阵乘法","authors":"Péter Vrana","doi":"arxiv-2408.15728","DOIUrl":null,"url":null,"abstract":"In a paper published in 1981, Sch\\\"onhage showed that large total matrix\nmultiplications can be reduced to powers of partial matrix multiplication\ntensors, which correspond to the bilinear computation task of multiplying\nmatrices with some of the entries fixed to be zero. It was left as an open\nproblem to generalize the method to the case when the multiplication is also\npartial in the sense that only a subset of the entries need to be computed. We\nprove a variant of a more general case: reducing large weighted matrix\nmultiplications to tensor powers of a partial matrix multiplication in the\nsense that every entry of the result is a partial version of the inner product\nof the corresponding row and column of the factors that would appear in the\nusual matrix product. The implication is that support rank upper bounds on\npartial matrix multiplication tensors in this general sense give upper bounds\non the support rank exponent of matrix multiplication.","PeriodicalId":501024,"journal":{"name":"arXiv - CS - Computational Complexity","volume":"67 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Partial and weighted matrix multiplication\",\"authors\":\"Péter Vrana\",\"doi\":\"arxiv-2408.15728\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a paper published in 1981, Sch\\\\\\\"onhage showed that large total matrix\\nmultiplications can be reduced to powers of partial matrix multiplication\\ntensors, which correspond to the bilinear computation task of multiplying\\nmatrices with some of the entries fixed to be zero. It was left as an open\\nproblem to generalize the method to the case when the multiplication is also\\npartial in the sense that only a subset of the entries need to be computed. We\\nprove a variant of a more general case: reducing large weighted matrix\\nmultiplications to tensor powers of a partial matrix multiplication in the\\nsense that every entry of the result is a partial version of the inner product\\nof the corresponding row and column of the factors that would appear in the\\nusual matrix product. The implication is that support rank upper bounds on\\npartial matrix multiplication tensors in this general sense give upper bounds\\non the support rank exponent of matrix multiplication.\",\"PeriodicalId\":501024,\"journal\":{\"name\":\"arXiv - CS - Computational Complexity\",\"volume\":\"67 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Computational Complexity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.15728\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.15728","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Sch\"onhage 在 1981 年发表的一篇论文中指出,大型总矩阵乘法可以简化为部分矩阵乘法张量的幂次,这相当于部分项为零的矩阵乘法的双线性计算任务。如何将这一方法推广到乘法也是部分乘法的情况,即只需计算子集条目,这还是一个未决问题。我们证明了一种更普遍情况的变体:将大型加权矩阵乘法简化为部分矩阵乘法的张量幂,即结果的每个条目都是相应行列因子内积的部分版本,而这些因子会出现在通常的矩阵乘法中。这意味着,在这种一般意义上,部分矩阵乘法张量的支持等级上限给出了矩阵乘法的支持等级指数上限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Partial and weighted matrix multiplication
In a paper published in 1981, Sch\"onhage showed that large total matrix multiplications can be reduced to powers of partial matrix multiplication tensors, which correspond to the bilinear computation task of multiplying matrices with some of the entries fixed to be zero. It was left as an open problem to generalize the method to the case when the multiplication is also partial in the sense that only a subset of the entries need to be computed. We prove a variant of a more general case: reducing large weighted matrix multiplications to tensor powers of a partial matrix multiplication in the sense that every entry of the result is a partial version of the inner product of the corresponding row and column of the factors that would appear in the usual matrix product. The implication is that support rank upper bounds on partial matrix multiplication tensors in this general sense give upper bounds on the support rank exponent of matrix multiplication.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信