通过自组合快速模拟细胞自动机

Joseph Natal, Oleksiy Al-saadi
{"title":"通过自组合快速模拟细胞自动机","authors":"Joseph Natal, Oleksiy Al-saadi","doi":"arxiv-2409.07065","DOIUrl":null,"url":null,"abstract":"It is shown that computing the configuration of any one-dimensional cellular\nautomaton at generation $n$ can be accelerated by constructing and running a\ncomposite one with a radius proportional to $\\log n$. The new automaton is the\noriginal automaton whose local rule function is composed with itself. The\nasymptotic time complexity to compute the configuration of generation $n$ is\nreduced from $O(n^2)$ operations to $O(n^2 / \\log n)$ on a given machine with\n$O(n^2)$ memory usage. Experimental results are given in the case of Rule 30.","PeriodicalId":501024,"journal":{"name":"arXiv - CS - Computational Complexity","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast Simulation of Cellular Automata by Self-Composition\",\"authors\":\"Joseph Natal, Oleksiy Al-saadi\",\"doi\":\"arxiv-2409.07065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is shown that computing the configuration of any one-dimensional cellular\\nautomaton at generation $n$ can be accelerated by constructing and running a\\ncomposite one with a radius proportional to $\\\\log n$. The new automaton is the\\noriginal automaton whose local rule function is composed with itself. The\\nasymptotic time complexity to compute the configuration of generation $n$ is\\nreduced from $O(n^2)$ operations to $O(n^2 / \\\\log n)$ on a given machine with\\n$O(n^2)$ memory usage. Experimental results are given in the case of Rule 30.\",\"PeriodicalId\":501024,\"journal\":{\"name\":\"arXiv - CS - Computational Complexity\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Computational Complexity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07065\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究表明,通过构建并运行一个半径与 $\log n$ 成比例的复合自动机,可以加速计算任何一维蜂窝自动机在生成 $n$ 时的配置。新的自动机是其局部规则函数与自身组成的原始自动机。在内存使用量为$O(n^2)$的给定机器上,计算第$n$代配置的渐近时间复杂度从$O(n^2)$运算降低到$O(n^2 / \log n)$。本文给出了规则 30 的实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast Simulation of Cellular Automata by Self-Composition
It is shown that computing the configuration of any one-dimensional cellular automaton at generation $n$ can be accelerated by constructing and running a composite one with a radius proportional to $\log n$. The new automaton is the original automaton whose local rule function is composed with itself. The asymptotic time complexity to compute the configuration of generation $n$ is reduced from $O(n^2)$ operations to $O(n^2 / \log n)$ on a given machine with $O(n^2)$ memory usage. Experimental results are given in the case of Rule 30.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信