训练用于回报预测的机器学习模型时,选择很重要

IF 3.4 3区 经济学 Q1 BUSINESS, FINANCE
Clint Howard
{"title":"训练用于回报预测的机器学习模型时,选择很重要","authors":"Clint Howard","doi":"10.1080/0015198x.2024.2388024","DOIUrl":null,"url":null,"abstract":"Applying machine learning to cross-sectional stock return prediction requires careful consideration of modeling choices. Common approaches that fail to account for heterogeneity or imbalanced stock...","PeriodicalId":48062,"journal":{"name":"Financial Analysts Journal","volume":"11 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Choices Matter When Training Machine Learning Models for Return Prediction\",\"authors\":\"Clint Howard\",\"doi\":\"10.1080/0015198x.2024.2388024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Applying machine learning to cross-sectional stock return prediction requires careful consideration of modeling choices. Common approaches that fail to account for heterogeneity or imbalanced stock...\",\"PeriodicalId\":48062,\"journal\":{\"name\":\"Financial Analysts Journal\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Financial Analysts Journal\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1080/0015198x.2024.2388024\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Financial Analysts Journal","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1080/0015198x.2024.2388024","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

摘要

将机器学习应用于横截面股票回报预测需要仔细考虑建模选择。常见的方法未能考虑到异质性或不平衡的股票回报率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Choices Matter When Training Machine Learning Models for Return Prediction
Applying machine learning to cross-sectional stock return prediction requires careful consideration of modeling choices. Common approaches that fail to account for heterogeneity or imbalanced stock...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Financial Analysts Journal
Financial Analysts Journal BUSINESS, FINANCE-
CiteScore
5.40
自引率
7.10%
发文量
31
期刊介绍: The Financial Analysts Journal aims to be the leading practitioner journal in the investment management community by advancing the knowledge and understanding of the practice of investment management through the publication of rigorous, peer-reviewed, practitioner-relevant research from leading academics and practitioners.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信