里氏代数的第一系数理想和 $R_1$ 属性

Tony J. Puthenpurakal
{"title":"里氏代数的第一系数理想和 $R_1$ 属性","authors":"Tony J. Puthenpurakal","doi":"arxiv-2408.05532","DOIUrl":null,"url":null,"abstract":"Let $(A,\\mathfrak{m})$ be an excellent normal local ring of dimension $d \\geq\n2$ with infinite residue field. Let $I$ be an $\\mathfrak{m}$-primary ideal.\nThen the following assertions are equivalent: (i) The extended Rees algebra $A[It, t^{-1}]$ is $R_1$. (ii) The Rees algebra $A[It]$ is $R_1$. (iii) $Proj(A[It])$ is $R_1$. (iv) $(I^n)^* = (I^n)_1$ for all $n \\geq 1$. Here $(I^n)^*$ is the integral closure of $I^n$ and $(I^n)_1$ is the first\ncoefficient ideal of $I^n$.","PeriodicalId":501475,"journal":{"name":"arXiv - MATH - Commutative Algebra","volume":"37 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"First Coefficient ideals and $R_1$ property of Rees algebras\",\"authors\":\"Tony J. Puthenpurakal\",\"doi\":\"arxiv-2408.05532\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $(A,\\\\mathfrak{m})$ be an excellent normal local ring of dimension $d \\\\geq\\n2$ with infinite residue field. Let $I$ be an $\\\\mathfrak{m}$-primary ideal.\\nThen the following assertions are equivalent: (i) The extended Rees algebra $A[It, t^{-1}]$ is $R_1$. (ii) The Rees algebra $A[It]$ is $R_1$. (iii) $Proj(A[It])$ is $R_1$. (iv) $(I^n)^* = (I^n)_1$ for all $n \\\\geq 1$. Here $(I^n)^*$ is the integral closure of $I^n$ and $(I^n)_1$ is the first\\ncoefficient ideal of $I^n$.\",\"PeriodicalId\":501475,\"journal\":{\"name\":\"arXiv - MATH - Commutative Algebra\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Commutative Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.05532\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Commutative Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.05532","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让 $(A,\mathfrak{m})$ 是一个维数为 $d \geq2$ 且有无限残差域的优秀正态局部环。让 $I$ 是一个 $\mathfrak{m}$ 主理想,那么下面的断言是等价的: (i) 扩展里斯代数 $A[It, t^{-1}]$ 是 $R_1$。(ii) Rees 代数 $A[It]$ 是 $R_1$。 (iii) $Proj(A[It])$ 是 $R_1$。 (iv) $(I^n)^* = (I^n)_1$ 对于所有 $n \geq 1$。这里 $(I^n)^*$ 是 $I^n$ 的积分闭包,$(I^n)_1$ 是 $I^n$ 的第一系数理想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
First Coefficient ideals and $R_1$ property of Rees algebras
Let $(A,\mathfrak{m})$ be an excellent normal local ring of dimension $d \geq 2$ with infinite residue field. Let $I$ be an $\mathfrak{m}$-primary ideal. Then the following assertions are equivalent: (i) The extended Rees algebra $A[It, t^{-1}]$ is $R_1$. (ii) The Rees algebra $A[It]$ is $R_1$. (iii) $Proj(A[It])$ is $R_1$. (iv) $(I^n)^* = (I^n)_1$ for all $n \geq 1$. Here $(I^n)^*$ is the integral closure of $I^n$ and $(I^n)_1$ is the first coefficient ideal of $I^n$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信