{"title":"软函数代数的德拉姆同调分裂是乘法性的","authors":"Igor Baskov","doi":"arxiv-2408.08689","DOIUrl":null,"url":null,"abstract":"Let $A$ be a real soft function algebra. In arXiv:2208.11431 we have obtained\na canonical splitting $\\mathrm{H}^* (\\Omega ^\\bullet _{A|\\mathrm{R}}) \\cong\n\\mathrm{H} ^* (X,\\mathrm{R})\\oplus \\text{(something)}$ via the canonical maps\n$\\Lambda_A:\\mathrm{H} ^* (X,\\mathrm{R})\\to\\mathrm{H} ^* (\\Omega ^\\bullet\n_{A|\\mathrm{R}})$ and $\\Psi_A:\\mathrm{H} ^* (\\Omega ^\\bullet\n_{A|\\mathrm{R}})\\to\\mathrm{H} ^* (X,\\mathrm{R})$. In this paper we prove that\nthese maps are multiplicative.","PeriodicalId":501475,"journal":{"name":"arXiv - MATH - Commutative Algebra","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The splitting of the de Rham cohomology of soft function algebras is multiplicative\",\"authors\":\"Igor Baskov\",\"doi\":\"arxiv-2408.08689\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $A$ be a real soft function algebra. In arXiv:2208.11431 we have obtained\\na canonical splitting $\\\\mathrm{H}^* (\\\\Omega ^\\\\bullet _{A|\\\\mathrm{R}}) \\\\cong\\n\\\\mathrm{H} ^* (X,\\\\mathrm{R})\\\\oplus \\\\text{(something)}$ via the canonical maps\\n$\\\\Lambda_A:\\\\mathrm{H} ^* (X,\\\\mathrm{R})\\\\to\\\\mathrm{H} ^* (\\\\Omega ^\\\\bullet\\n_{A|\\\\mathrm{R}})$ and $\\\\Psi_A:\\\\mathrm{H} ^* (\\\\Omega ^\\\\bullet\\n_{A|\\\\mathrm{R}})\\\\to\\\\mathrm{H} ^* (X,\\\\mathrm{R})$. In this paper we prove that\\nthese maps are multiplicative.\",\"PeriodicalId\":501475,\"journal\":{\"name\":\"arXiv - MATH - Commutative Algebra\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Commutative Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.08689\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Commutative Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.08689","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The splitting of the de Rham cohomology of soft function algebras is multiplicative
Let $A$ be a real soft function algebra. In arXiv:2208.11431 we have obtained
a canonical splitting $\mathrm{H}^* (\Omega ^\bullet _{A|\mathrm{R}}) \cong
\mathrm{H} ^* (X,\mathrm{R})\oplus \text{(something)}$ via the canonical maps
$\Lambda_A:\mathrm{H} ^* (X,\mathrm{R})\to\mathrm{H} ^* (\Omega ^\bullet
_{A|\mathrm{R}})$ and $\Psi_A:\mathrm{H} ^* (\Omega ^\bullet
_{A|\mathrm{R}})\to\mathrm{H} ^* (X,\mathrm{R})$. In this paper we prove that
these maps are multiplicative.