超正交单体 III:因式分解与分割封面

Zur Izhakian, Manfred Knebusch
{"title":"超正交单体 III:因式分解与分割封面","authors":"Zur Izhakian, Manfred Knebusch","doi":"arxiv-2408.10772","DOIUrl":null,"url":null,"abstract":"The category $STROP_m$ of supertropical monoids, whose morphisms are\ntransmissions, has the full--reflective subcategory $STROP$ of commutative\nsemirings. In this setup, quotients are determined directly by equivalence\nrelations, as ideals are not applicable for monoids, leading to a new approach\nto factorization theory. To this end, tangible factorization into irreducibles\nis obtained through fiber contractions and their hierarchy. Fiber contractions\nalso provide different quotient structures, associated with covers and types of\nsplitting covers.","PeriodicalId":501475,"journal":{"name":"arXiv - MATH - Commutative Algebra","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Supertropical Monoids III: Factorization and splitting covers\",\"authors\":\"Zur Izhakian, Manfred Knebusch\",\"doi\":\"arxiv-2408.10772\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The category $STROP_m$ of supertropical monoids, whose morphisms are\\ntransmissions, has the full--reflective subcategory $STROP$ of commutative\\nsemirings. In this setup, quotients are determined directly by equivalence\\nrelations, as ideals are not applicable for monoids, leading to a new approach\\nto factorization theory. To this end, tangible factorization into irreducibles\\nis obtained through fiber contractions and their hierarchy. Fiber contractions\\nalso provide different quotient structures, associated with covers and types of\\nsplitting covers.\",\"PeriodicalId\":501475,\"journal\":{\"name\":\"arXiv - MATH - Commutative Algebra\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Commutative Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.10772\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Commutative Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.10772","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

态射为传递的超托单体范畴$STROP_m$具有交换irings的全反射子范畴$STROP$。在这种情况下,商直接由等价关系决定,因为理想并不适用于单实体,这就导致了一种新的因式分解理论方法。为此,我们通过纤维收缩及其层次结构获得了有形因式分解为不可还原体的方法。纤维收缩还提供了不同的商结构,与盖和分盖类型相关联。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Supertropical Monoids III: Factorization and splitting covers
The category $STROP_m$ of supertropical monoids, whose morphisms are transmissions, has the full--reflective subcategory $STROP$ of commutative semirings. In this setup, quotients are determined directly by equivalence relations, as ideals are not applicable for monoids, leading to a new approach to factorization theory. To this end, tangible factorization into irreducibles is obtained through fiber contractions and their hierarchy. Fiber contractions also provide different quotient structures, associated with covers and types of splitting covers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信