φ$-δ$-$S$-初等超等式

Mahdi Anbarloei
{"title":"φ$-δ$-$S$-初等超等式","authors":"Mahdi Anbarloei","doi":"arxiv-2408.12241","DOIUrl":null,"url":null,"abstract":"Among many generalizations of primary hyperideals, weakly $n$-ary primary\nhyperideals and $n$-ary $S$-primary hyperideals have been studied recently. Let\n$S$ be an $n$-ary multiplicative set of a commutative Krasner $(m,n)$-hyperring\n$K$ and, $\\phi$ and $\\delta$ be reduction and expansion functions of\nhyperideals of $K$, respectively. The purpose of this paper is to introduce\n$n$-ary $\\phi$-$\\delta$-$S$-primary hyperideals which serve as an extension of\n$S$-primary hyperideals with the help of $\\phi$ and $\\delta$. We present some\nmain results and examples explaining the sructure of this concept. We examine\nthe relations of $n$-ary $S$-primary hyperideals with other classes of\nhyperideals and give some ways to connect them. Moreover, we give some\ncharacterizations of this notion on direct product of commutative Krasner $(m,\nn)$-hyperrings.","PeriodicalId":501475,"journal":{"name":"arXiv - MATH - Commutative Algebra","volume":"31 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"$φ$-$δ$-$S$-primary hyperideals\",\"authors\":\"Mahdi Anbarloei\",\"doi\":\"arxiv-2408.12241\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Among many generalizations of primary hyperideals, weakly $n$-ary primary\\nhyperideals and $n$-ary $S$-primary hyperideals have been studied recently. Let\\n$S$ be an $n$-ary multiplicative set of a commutative Krasner $(m,n)$-hyperring\\n$K$ and, $\\\\phi$ and $\\\\delta$ be reduction and expansion functions of\\nhyperideals of $K$, respectively. The purpose of this paper is to introduce\\n$n$-ary $\\\\phi$-$\\\\delta$-$S$-primary hyperideals which serve as an extension of\\n$S$-primary hyperideals with the help of $\\\\phi$ and $\\\\delta$. We present some\\nmain results and examples explaining the sructure of this concept. We examine\\nthe relations of $n$-ary $S$-primary hyperideals with other classes of\\nhyperideals and give some ways to connect them. Moreover, we give some\\ncharacterizations of this notion on direct product of commutative Krasner $(m,\\nn)$-hyperrings.\",\"PeriodicalId\":501475,\"journal\":{\"name\":\"arXiv - MATH - Commutative Algebra\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Commutative Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.12241\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Commutative Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.12241","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在初等超次元的众多广义中,弱$n$-初等超次元和$n$-初等$S$-初等超次元最近得到了研究。设$S$是一个交换克拉斯诺$(m,n)$-超环$K$的$n$-一元乘法集,并且,$\phi$和$\delta$分别是$K$的超次元的还原函数和展开函数。本文的目的是引入$n$-ary $\phi$-$\delta$-$S$-初等双曲线,它是借助$\phi$和$\delta$对$S$-初等双曲线的扩展。我们提出一些主要结果和例子来解释这一概念的结构。我们研究了 $n$ary $S$-primary hyperideals 与其他类超次元的关系,并给出了连接它们的一些方法。此外,我们还给出了这一概念在交换克拉斯诺 $(m,n)$-超环的直接积上的一些特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
$φ$-$δ$-$S$-primary hyperideals
Among many generalizations of primary hyperideals, weakly $n$-ary primary hyperideals and $n$-ary $S$-primary hyperideals have been studied recently. Let $S$ be an $n$-ary multiplicative set of a commutative Krasner $(m,n)$-hyperring $K$ and, $\phi$ and $\delta$ be reduction and expansion functions of hyperideals of $K$, respectively. The purpose of this paper is to introduce $n$-ary $\phi$-$\delta$-$S$-primary hyperideals which serve as an extension of $S$-primary hyperideals with the help of $\phi$ and $\delta$. We present some main results and examples explaining the sructure of this concept. We examine the relations of $n$-ary $S$-primary hyperideals with other classes of hyperideals and give some ways to connect them. Moreover, we give some characterizations of this notion on direct product of commutative Krasner $(m, n)$-hyperrings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信