J. C. Rosales, R. Tapia-Ramos, A. Vigneron-Tenorio
{"title":"研究仿射锥的有限互补子单子的计算方法","authors":"J. C. Rosales, R. Tapia-Ramos, A. Vigneron-Tenorio","doi":"arxiv-2409.06376","DOIUrl":null,"url":null,"abstract":"Let $\\mathcal{C}\\subseteq \\mathbb{N}^p$ be an integer cone. A\n$\\mathcal{C}$-semigroup $S\\subseteq \\mathcal{C}$ is an affine semigroup such\nthat the set $\\mathcal{C}\\setminus S$ is finite. Such $\\mathcal{C}$-semigroups\nare central to our study. We develop new algorithms for computing\n$\\mathcal{C}$-semigroups with specified invariants, including genus, Frobenius\nelement, and their combinations, among other invariants. To achieve this, we\nintroduce a new class of $\\mathcal{C}$-semigroups, termed\n$\\mathcal{B}$-semigroups. By fixing the degree lexicographic order, we also\nresearch the embedding dimension for both ordinary and mult-embedded\n$\\mathbb{N}^2$-semigroups. These results are applied to test some\ngeneralizations of Wilf's conjecture.","PeriodicalId":501475,"journal":{"name":"arXiv - MATH - Commutative Algebra","volume":"31 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A computational approach to the study of finite-complement submonids of an affine cone\",\"authors\":\"J. C. Rosales, R. Tapia-Ramos, A. Vigneron-Tenorio\",\"doi\":\"arxiv-2409.06376\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $\\\\mathcal{C}\\\\subseteq \\\\mathbb{N}^p$ be an integer cone. A\\n$\\\\mathcal{C}$-semigroup $S\\\\subseteq \\\\mathcal{C}$ is an affine semigroup such\\nthat the set $\\\\mathcal{C}\\\\setminus S$ is finite. Such $\\\\mathcal{C}$-semigroups\\nare central to our study. We develop new algorithms for computing\\n$\\\\mathcal{C}$-semigroups with specified invariants, including genus, Frobenius\\nelement, and their combinations, among other invariants. To achieve this, we\\nintroduce a new class of $\\\\mathcal{C}$-semigroups, termed\\n$\\\\mathcal{B}$-semigroups. By fixing the degree lexicographic order, we also\\nresearch the embedding dimension for both ordinary and mult-embedded\\n$\\\\mathbb{N}^2$-semigroups. These results are applied to test some\\ngeneralizations of Wilf's conjecture.\",\"PeriodicalId\":501475,\"journal\":{\"name\":\"arXiv - MATH - Commutative Algebra\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Commutative Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.06376\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Commutative Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06376","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A computational approach to the study of finite-complement submonids of an affine cone
Let $\mathcal{C}\subseteq \mathbb{N}^p$ be an integer cone. A
$\mathcal{C}$-semigroup $S\subseteq \mathcal{C}$ is an affine semigroup such
that the set $\mathcal{C}\setminus S$ is finite. Such $\mathcal{C}$-semigroups
are central to our study. We develop new algorithms for computing
$\mathcal{C}$-semigroups with specified invariants, including genus, Frobenius
element, and their combinations, among other invariants. To achieve this, we
introduce a new class of $\mathcal{C}$-semigroups, termed
$\mathcal{B}$-semigroups. By fixing the degree lexicographic order, we also
research the embedding dimension for both ordinary and mult-embedded
$\mathbb{N}^2$-semigroups. These results are applied to test some
generalizations of Wilf's conjecture.