{"title":"交换环的基于理想的准共零除数图","authors":"F. Farshadifar","doi":"arxiv-2408.13216","DOIUrl":null,"url":null,"abstract":"Let R be a commutative ring with identity, and let I be an ideal of R. The\nzero-divisor graph of R with respect to I, denoted by $\\Gamma_I(R)$, is the\ngraph whose vertices are the set $\\{x \\in R \\setminus I | xy \\in I$ for some $y\n\\in R \\setminus I\\}$, where distinct vertices x and y are adjacent if and only\nif $xy \\in I$. The cozero-divisor graph with respect to I, denoted by\n$\\Gamma''_I(R)$, is the graph of $R$ with vertices $\\{x \\in R \\setminus I | xR\n+ I \\neq R\\}$, and two distinct vertices x and y are adjacent if and only if $x\n\\notin yR + I$ and $y \\notin xR + I$. In this paper, we introduce and\ninvestigate an undirected graph $Q\\Gamma''_I(R)$ of R with vertices $\\{x \\in R\n\\setminus \\sqrt{I} | xR + I \\neq R$ and $xR + \\sqrt{I} = xR + I\\}$ and two\ndistinct vertices x and y are adjacent if and only if $x \\notin yR + I$ and $y\n\\notin xR + I$.","PeriodicalId":501475,"journal":{"name":"arXiv - MATH - Commutative Algebra","volume":"41 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ideal-based quasi cozero divisor graph of a commutative ring\",\"authors\":\"F. Farshadifar\",\"doi\":\"arxiv-2408.13216\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let R be a commutative ring with identity, and let I be an ideal of R. The\\nzero-divisor graph of R with respect to I, denoted by $\\\\Gamma_I(R)$, is the\\ngraph whose vertices are the set $\\\\{x \\\\in R \\\\setminus I | xy \\\\in I$ for some $y\\n\\\\in R \\\\setminus I\\\\}$, where distinct vertices x and y are adjacent if and only\\nif $xy \\\\in I$. The cozero-divisor graph with respect to I, denoted by\\n$\\\\Gamma''_I(R)$, is the graph of $R$ with vertices $\\\\{x \\\\in R \\\\setminus I | xR\\n+ I \\\\neq R\\\\}$, and two distinct vertices x and y are adjacent if and only if $x\\n\\\\notin yR + I$ and $y \\\\notin xR + I$. In this paper, we introduce and\\ninvestigate an undirected graph $Q\\\\Gamma''_I(R)$ of R with vertices $\\\\{x \\\\in R\\n\\\\setminus \\\\sqrt{I} | xR + I \\\\neq R$ and $xR + \\\\sqrt{I} = xR + I\\\\}$ and two\\ndistinct vertices x and y are adjacent if and only if $x \\\\notin yR + I$ and $y\\n\\\\notin xR + I$.\",\"PeriodicalId\":501475,\"journal\":{\"name\":\"arXiv - MATH - Commutative Algebra\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Commutative Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.13216\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Commutative Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.13216","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
让 R 是一个具有同一性的交换环,让 I 是 R 的一个理想。R 关于 I 的零因子图,用 $\Gamma_I(R)$ 表示,是其顶点为集合 $\{x \in R \setminus I | xy \in I$ for some $y\in R \setminus I\}$ 的图,当且仅当 $xy \in I$ 时,不同的顶点 x 和 y 是相邻的。与 I 有关的零因子图,用$Gamma''_I(R)$表示,是$R$的图,其顶点为${x \in R \setminus I | xR+ I \neq R\}$, 当且仅当 $x\notin yR + I$ 和 $y \notin xR + I$ 时,两个不同的顶点 x 和 y 是相邻的。在本文中,我们引入并研究了一个 R 的无向图 $Q(Gamma''_I(R)$,其顶点为 $\{x (在 R 中)减去 \sqrt{I}| xR + I \neq R$ 和 $xR + \sqrt{I} = xR + I\}$ 并且当且仅当 $x \notin yR + I$ 和 $y\notin xR + I$ 时,两个不同的顶点 x 和 y 是相邻的。
Ideal-based quasi cozero divisor graph of a commutative ring
Let R be a commutative ring with identity, and let I be an ideal of R. The
zero-divisor graph of R with respect to I, denoted by $\Gamma_I(R)$, is the
graph whose vertices are the set $\{x \in R \setminus I | xy \in I$ for some $y
\in R \setminus I\}$, where distinct vertices x and y are adjacent if and only
if $xy \in I$. The cozero-divisor graph with respect to I, denoted by
$\Gamma''_I(R)$, is the graph of $R$ with vertices $\{x \in R \setminus I | xR
+ I \neq R\}$, and two distinct vertices x and y are adjacent if and only if $x
\notin yR + I$ and $y \notin xR + I$. In this paper, we introduce and
investigate an undirected graph $Q\Gamma''_I(R)$ of R with vertices $\{x \in R
\setminus \sqrt{I} | xR + I \neq R$ and $xR + \sqrt{I} = xR + I\}$ and two
distinct vertices x and y are adjacent if and only if $x \notin yR + I$ and $y
\notin xR + I$.