{"title":"$S$-诺特环的模块理论表征","authors":"Xiaolei Zhang","doi":"arxiv-2408.14781","DOIUrl":null,"url":null,"abstract":"Let $R$ be a ring and $S$ a multiplicative subset of $R$. In this note, we\nobtain the ACC characterization and Cartan-Eilenberg-Bass theorem for\n$S$-Noetherian rings. In details, we show that a ring $R$ is an $S$-Noetherian\nring if and only if any ascending chain of ideals of $R$ is $S$-stationary, if\nand only if any direct sum of injective modules is $S$-injective, if and only\nif any direct limit of injective modules is $S$-injective.","PeriodicalId":501475,"journal":{"name":"arXiv - MATH - Commutative Algebra","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A module-theoretic characterization of $S$-Noetherian rings\",\"authors\":\"Xiaolei Zhang\",\"doi\":\"arxiv-2408.14781\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $R$ be a ring and $S$ a multiplicative subset of $R$. In this note, we\\nobtain the ACC characterization and Cartan-Eilenberg-Bass theorem for\\n$S$-Noetherian rings. In details, we show that a ring $R$ is an $S$-Noetherian\\nring if and only if any ascending chain of ideals of $R$ is $S$-stationary, if\\nand only if any direct sum of injective modules is $S$-injective, if and only\\nif any direct limit of injective modules is $S$-injective.\",\"PeriodicalId\":501475,\"journal\":{\"name\":\"arXiv - MATH - Commutative Algebra\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Commutative Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.14781\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Commutative Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.14781","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A module-theoretic characterization of $S$-Noetherian rings
Let $R$ be a ring and $S$ a multiplicative subset of $R$. In this note, we
obtain the ACC characterization and Cartan-Eilenberg-Bass theorem for
$S$-Noetherian rings. In details, we show that a ring $R$ is an $S$-Noetherian
ring if and only if any ascending chain of ideals of $R$ is $S$-stationary, if
and only if any direct sum of injective modules is $S$-injective, if and only
if any direct limit of injective modules is $S$-injective.