参数理想的一级分解综合系统

Yuki Ishihara, Kazuhiro Yokoyama
{"title":"参数理想的一级分解综合系统","authors":"Yuki Ishihara, Kazuhiro Yokoyama","doi":"arxiv-2408.15917","DOIUrl":null,"url":null,"abstract":"We present an effective method for computing parametric primary decomposition\nvia comprehensive Gr\\\"obner systems. In general, it is very difficult to\ncompute a parametric primary decomposition of a given ideal in the polynomial\nring with rational coefficients $\\mathbb{Q}[A,X]$ where $A$ is the set of\nparameters and $X$ is the set of ordinary variables. One cause of the\ndifficulty is related to the irreducibility of the specialized polynomial.\nThus, we introduce a new notion of ``feasibility'' on the stability of the\nstructure of the ideal in terms of its primary decomposition, and we give a new\nalgorithm for computing a so-called comprehensive system consisting of pairs\n$(C, \\mathcal{Q})$, where for each parameter value in $C$, the ideal has the\nstable decomposition $\\mathcal{Q}$. We may call this comprehensive system a\nparametric primary decomposition of the ideal. Also, one can also compute a\ndense set $\\mathcal{O}$ such that $\\varphi_\\alpha(\\mathcal{Q})$ is a primary\ndecomposition for any $\\alpha\\in C\\cap \\mathcal{O}$ via irreducible\npolynomials. In addition, we give several computational examples to examine the\neffectiveness of our new decomposition.","PeriodicalId":501475,"journal":{"name":"arXiv - MATH - Commutative Algebra","volume":"35 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comprehensive Systems for Primary Decompositions of Parametric Ideals\",\"authors\":\"Yuki Ishihara, Kazuhiro Yokoyama\",\"doi\":\"arxiv-2408.15917\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an effective method for computing parametric primary decomposition\\nvia comprehensive Gr\\\\\\\"obner systems. In general, it is very difficult to\\ncompute a parametric primary decomposition of a given ideal in the polynomial\\nring with rational coefficients $\\\\mathbb{Q}[A,X]$ where $A$ is the set of\\nparameters and $X$ is the set of ordinary variables. One cause of the\\ndifficulty is related to the irreducibility of the specialized polynomial.\\nThus, we introduce a new notion of ``feasibility'' on the stability of the\\nstructure of the ideal in terms of its primary decomposition, and we give a new\\nalgorithm for computing a so-called comprehensive system consisting of pairs\\n$(C, \\\\mathcal{Q})$, where for each parameter value in $C$, the ideal has the\\nstable decomposition $\\\\mathcal{Q}$. We may call this comprehensive system a\\nparametric primary decomposition of the ideal. Also, one can also compute a\\ndense set $\\\\mathcal{O}$ such that $\\\\varphi_\\\\alpha(\\\\mathcal{Q})$ is a primary\\ndecomposition for any $\\\\alpha\\\\in C\\\\cap \\\\mathcal{O}$ via irreducible\\npolynomials. In addition, we give several computational examples to examine the\\neffectiveness of our new decomposition.\",\"PeriodicalId\":501475,\"journal\":{\"name\":\"arXiv - MATH - Commutative Algebra\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Commutative Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.15917\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Commutative Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.15917","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种通过综合 Gr\"obner 系统计算参数一级分解的有效方法。一般来说,在有理系数为 $\mathbb{Q}[A,X]$(其中 $A$ 是参数集,$X$ 是普通变量集)的多项式环中计算给定理想的参数一级分解是非常困难的。因此,我们引入了一个新的 "可行性 "概念,即理想的一级分解结构的稳定性,并给出了一个新的算法来计算由$(C, \mathcal{Q})$组成的所谓综合系统,其中对于$C$中的每个参数值,理想都有稳定的分解$\mathcal{Q}$。我们可以称这个综合系统为理想的参数一级分解。同时,我们也可以通过不可还原多项式计算出一个密集 $/mathcal{O}$,使得 $\varphi_\alpha(\mathcal{Q})$ 是 C\cap \mathcal{O}$ 中任意 $\alpha 的一级分解。此外,我们给出了几个计算实例来检验我们新分解的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comprehensive Systems for Primary Decompositions of Parametric Ideals
We present an effective method for computing parametric primary decomposition via comprehensive Gr\"obner systems. In general, it is very difficult to compute a parametric primary decomposition of a given ideal in the polynomial ring with rational coefficients $\mathbb{Q}[A,X]$ where $A$ is the set of parameters and $X$ is the set of ordinary variables. One cause of the difficulty is related to the irreducibility of the specialized polynomial. Thus, we introduce a new notion of ``feasibility'' on the stability of the structure of the ideal in terms of its primary decomposition, and we give a new algorithm for computing a so-called comprehensive system consisting of pairs $(C, \mathcal{Q})$, where for each parameter value in $C$, the ideal has the stable decomposition $\mathcal{Q}$. We may call this comprehensive system a parametric primary decomposition of the ideal. Also, one can also compute a dense set $\mathcal{O}$ such that $\varphi_\alpha(\mathcal{Q})$ is a primary decomposition for any $\alpha\in C\cap \mathcal{O}$ via irreducible polynomials. In addition, we give several computational examples to examine the effectiveness of our new decomposition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信