无穷远处的曲面和半群

C. Galindo, F. Monserrat, C. -J. Moreno-Ávila, J. -J. Moyano-Fernández
{"title":"无穷远处的曲面和半群","authors":"C. Galindo, F. Monserrat, C. -J. Moreno-Ávila, J. -J. Moyano-Fernández","doi":"arxiv-2408.15931","DOIUrl":null,"url":null,"abstract":"We introduce surfaces at infinity, a class of rational surfaces linked to\ncurves with only one place at infinity. The cone of curves of these surfaces is\nfinite polyhedral and minimally generated. We also introduce the\n$\\delta$-semigroup of a surface at infinity and consider the set $\\mathcal{S}$\nof surfaces at infinity having the same $\\delta$-semigroup. We study how the\ngenerators of the cone of curves of surfaces in $\\mathcal{S}$ behave.","PeriodicalId":501475,"journal":{"name":"arXiv - MATH - Commutative Algebra","volume":"31 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surfaces and semigroups at infinity\",\"authors\":\"C. Galindo, F. Monserrat, C. -J. Moreno-Ávila, J. -J. Moyano-Fernández\",\"doi\":\"arxiv-2408.15931\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce surfaces at infinity, a class of rational surfaces linked to\\ncurves with only one place at infinity. The cone of curves of these surfaces is\\nfinite polyhedral and minimally generated. We also introduce the\\n$\\\\delta$-semigroup of a surface at infinity and consider the set $\\\\mathcal{S}$\\nof surfaces at infinity having the same $\\\\delta$-semigroup. We study how the\\ngenerators of the cone of curves of surfaces in $\\\\mathcal{S}$ behave.\",\"PeriodicalId\":501475,\"journal\":{\"name\":\"arXiv - MATH - Commutative Algebra\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Commutative Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.15931\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Commutative Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.15931","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们介绍无穷远处的曲面,这是一类与曲线相连的有理曲面,在无穷远处只有一个位置。这些曲面的曲线锥是无限多面体且最小生成的。我们还介绍了无穷远曲面的$\delta$-半群,并考虑了具有相同$\delta$-半群的无穷远曲面的集合$\mathcal{S}$。我们将研究$\mathcal{S}$中曲面曲线锥的生成器的行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Surfaces and semigroups at infinity
We introduce surfaces at infinity, a class of rational surfaces linked to curves with only one place at infinity. The cone of curves of these surfaces is finite polyhedral and minimally generated. We also introduce the $\delta$-semigroup of a surface at infinity and consider the set $\mathcal{S}$ of surfaces at infinity having the same $\delta$-semigroup. We study how the generators of the cone of curves of surfaces in $\mathcal{S}$ behave.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信