{"title":"两类科恩-麦考莱二项式边理想的规律性","authors":"Om Prakash Bhardwaj, Kamalesh Saha","doi":"arxiv-2409.01639","DOIUrl":null,"url":null,"abstract":"Some recent investigations indicate that for the classification of\nCohen-Macaulay binomial edge ideals, it suffices to consider biconnected graphs\nwith some whiskers attached (in short, `block with whiskers'). This paper\nprovides explicit combinatorial formulae for the Castelnuovo-Mumford regularity\nof two specific classes of Cohen-Macaulay binomial edge ideals: (i) chain of\ncycles with whiskers and (ii) $r$-regular $r$-connected block with whiskers.\nFor the first type, we introduce a new invariant of graphs in terms of the\nnumber of blocks in certain induced block graphs, and this invariant may help\ndetermine the regularity of other classes of binomial edge ideals. For the\nsecond type, we present the formula as a linear function of $r$.","PeriodicalId":501475,"journal":{"name":"arXiv - MATH - Commutative Algebra","volume":"57 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regularity of two classes of Cohen-Macaulay binomial edge ideals\",\"authors\":\"Om Prakash Bhardwaj, Kamalesh Saha\",\"doi\":\"arxiv-2409.01639\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Some recent investigations indicate that for the classification of\\nCohen-Macaulay binomial edge ideals, it suffices to consider biconnected graphs\\nwith some whiskers attached (in short, `block with whiskers'). This paper\\nprovides explicit combinatorial formulae for the Castelnuovo-Mumford regularity\\nof two specific classes of Cohen-Macaulay binomial edge ideals: (i) chain of\\ncycles with whiskers and (ii) $r$-regular $r$-connected block with whiskers.\\nFor the first type, we introduce a new invariant of graphs in terms of the\\nnumber of blocks in certain induced block graphs, and this invariant may help\\ndetermine the regularity of other classes of binomial edge ideals. For the\\nsecond type, we present the formula as a linear function of $r$.\",\"PeriodicalId\":501475,\"journal\":{\"name\":\"arXiv - MATH - Commutative Algebra\",\"volume\":\"57 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Commutative Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.01639\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Commutative Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.01639","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
最近的一些研究表明,对于科恩-麦考莱二项式边理想的分类,只需考虑附有一些须的双连图(简言之,"带须块")即可。本文提供了两类特定科恩-麦考莱二项式边理想的卡斯特努沃-蒙福德正则性的明确组合公式:(i) 带须的循环链和 (ii) $r$-regular $r$-connected block with whiskers。对于第一类,我们根据某些诱导块图中的块数引入了一种新的图不变式,这种不变式可能有助于确定其他类二项式边理想的正则性。对于第二种类型,我们将公式表述为 $r$ 的线性函数。
Regularity of two classes of Cohen-Macaulay binomial edge ideals
Some recent investigations indicate that for the classification of
Cohen-Macaulay binomial edge ideals, it suffices to consider biconnected graphs
with some whiskers attached (in short, `block with whiskers'). This paper
provides explicit combinatorial formulae for the Castelnuovo-Mumford regularity
of two specific classes of Cohen-Macaulay binomial edge ideals: (i) chain of
cycles with whiskers and (ii) $r$-regular $r$-connected block with whiskers.
For the first type, we introduce a new invariant of graphs in terms of the
number of blocks in certain induced block graphs, and this invariant may help
determine the regularity of other classes of binomial edge ideals. For the
second type, we present the formula as a linear function of $r$.