{"title":"斯坦利-赖斯纳理想与纯粹的决心","authors":"David Carey, Moty Katzman","doi":"arxiv-2409.05481","DOIUrl":null,"url":null,"abstract":"We investigate Stanley-Reisner ideals with pure resolutions. To do this, we\nintroduce the family of PR complexes, simplicial complexes whose dual\nStanley-Reisner ideals have pure resolutions. We present two infinite families\nof highly-symmetric PR complexes. We also prove a partial analogue to the first\nBoij-S\\\"{o}derberg Conjecture for Stanley-Reisner ideals, by detailing an\nalgorithm for constructing Stanley-Reisner ideals with pure Betti diagrams of\nany given shape, save for the initial shift $c_0$.","PeriodicalId":501475,"journal":{"name":"arXiv - MATH - Commutative Algebra","volume":"35 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stanley-Reisner Ideals with Pure Resolutions\",\"authors\":\"David Carey, Moty Katzman\",\"doi\":\"arxiv-2409.05481\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate Stanley-Reisner ideals with pure resolutions. To do this, we\\nintroduce the family of PR complexes, simplicial complexes whose dual\\nStanley-Reisner ideals have pure resolutions. We present two infinite families\\nof highly-symmetric PR complexes. We also prove a partial analogue to the first\\nBoij-S\\\\\\\"{o}derberg Conjecture for Stanley-Reisner ideals, by detailing an\\nalgorithm for constructing Stanley-Reisner ideals with pure Betti diagrams of\\nany given shape, save for the initial shift $c_0$.\",\"PeriodicalId\":501475,\"journal\":{\"name\":\"arXiv - MATH - Commutative Algebra\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Commutative Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.05481\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Commutative Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05481","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We investigate Stanley-Reisner ideals with pure resolutions. To do this, we
introduce the family of PR complexes, simplicial complexes whose dual
Stanley-Reisner ideals have pure resolutions. We present two infinite families
of highly-symmetric PR complexes. We also prove a partial analogue to the first
Boij-S\"{o}derberg Conjecture for Stanley-Reisner ideals, by detailing an
algorithm for constructing Stanley-Reisner ideals with pure Betti diagrams of
any given shape, save for the initial shift $c_0$.