通过模块实现小最小边界秩张量的分类和退化

Jakub Jagiełła, Joachim Jelisiejew
{"title":"通过模块实现小最小边界秩张量的分类和退化","authors":"Jakub Jagiełła, Joachim Jelisiejew","doi":"arxiv-2409.06025","DOIUrl":null,"url":null,"abstract":"We give a self-contained classification of $1_*$-generic minimal border rank\ntensors in $C^m \\otimes C^m \\otimes C^m$ for $m \\leq 5$. Together with previous\nresults, this gives a classification of all minimal border rank tensors in $C^m\n\\otimes C^m \\otimes C^m$ for $m \\leq 5$: there are $37$ isomorphism classes. We\nfully describe possible degenerations among the tensors. We prove that there\nare no $1$-degenerate minimal border rank tensors in $C^m \\otimes C^m \\otimes\nC^m $ for $m \\leq 4$.","PeriodicalId":501475,"journal":{"name":"arXiv - MATH - Commutative Algebra","volume":"57 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classification and degenerations of small minimal border rank tensors via modules\",\"authors\":\"Jakub Jagiełła, Joachim Jelisiejew\",\"doi\":\"arxiv-2409.06025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give a self-contained classification of $1_*$-generic minimal border rank\\ntensors in $C^m \\\\otimes C^m \\\\otimes C^m$ for $m \\\\leq 5$. Together with previous\\nresults, this gives a classification of all minimal border rank tensors in $C^m\\n\\\\otimes C^m \\\\otimes C^m$ for $m \\\\leq 5$: there are $37$ isomorphism classes. We\\nfully describe possible degenerations among the tensors. We prove that there\\nare no $1$-degenerate minimal border rank tensors in $C^m \\\\otimes C^m \\\\otimes\\nC^m $ for $m \\\\leq 4$.\",\"PeriodicalId\":501475,\"journal\":{\"name\":\"arXiv - MATH - Commutative Algebra\",\"volume\":\"57 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Commutative Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.06025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Commutative Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们给出了$m \leq 5$ 时$C^m \otimes C^m \otimes C^m$ 中$1_*$通用最小边界秩张量的自足分类。结合之前的结果,这给出了 $m leq 5$ 时 $C^m\otimes C^m\otimes C^m$ 中所有最小边界秩张量的分类:有 37 个同构类。我们描述了张量之间可能存在的退化。我们证明了对于 $m (leq 4$),在 $C^m \otimes C^m \otimesC^m $ 中没有$1$退化的最小边界等级张量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classification and degenerations of small minimal border rank tensors via modules
We give a self-contained classification of $1_*$-generic minimal border rank tensors in $C^m \otimes C^m \otimes C^m$ for $m \leq 5$. Together with previous results, this gives a classification of all minimal border rank tensors in $C^m \otimes C^m \otimes C^m$ for $m \leq 5$: there are $37$ isomorphism classes. We fully describe possible degenerations among the tensors. We prove that there are no $1$-degenerate minimal border rank tensors in $C^m \otimes C^m \otimes C^m $ for $m \leq 4$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信