科恩-麦考莱森林、周期和须周期的无平方幂

Kanoy Kumar Das, Amit Roy, Kamalesh Saha
{"title":"科恩-麦考莱森林、周期和须周期的无平方幂","authors":"Kanoy Kumar Das, Amit Roy, Kamalesh Saha","doi":"arxiv-2409.06021","DOIUrl":null,"url":null,"abstract":"Let $I(G)^{[k]}$ denote the $k^{th}$ square-free power of the edge ideal\n$I(G)$ of a graph $G$. In this article, we provide a precise formula for the\ndepth of $I(G)^{[k]}$ when $G$ is a Cohen-Macaulay forest. Using this, we show\nthat for a Cohen-Macaualy forest $G$, the $k^{th}$ square-free power of $I(G)$\nis always Cohen-Macaulay, which is quite surprising since all ordinary powers\nof $I(G)$ can never be Cohen-Macaulay unless $G$ is a disjoint union of edges.\nAdditionally, we provide tight bounds for the regularity and depth of\n$I(G)^{[k]}$ when $G$ is either a cycle or a whiskered cycle, which aids in\nidentifying when such ideals have linear resolution. Furthermore, we provide\ncombinatorial formulas for the depth of second square-free powers of edge\nideals of cycles and whiskered cycles. We also obtained an explicit formula of\nthe regularity of second square-free power for whiskered cycles.","PeriodicalId":501475,"journal":{"name":"arXiv - MATH - Commutative Algebra","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Square-free powers of Cohen-Macaulay forests, cycles, and whiskered cycles\",\"authors\":\"Kanoy Kumar Das, Amit Roy, Kamalesh Saha\",\"doi\":\"arxiv-2409.06021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $I(G)^{[k]}$ denote the $k^{th}$ square-free power of the edge ideal\\n$I(G)$ of a graph $G$. In this article, we provide a precise formula for the\\ndepth of $I(G)^{[k]}$ when $G$ is a Cohen-Macaulay forest. Using this, we show\\nthat for a Cohen-Macaualy forest $G$, the $k^{th}$ square-free power of $I(G)$\\nis always Cohen-Macaulay, which is quite surprising since all ordinary powers\\nof $I(G)$ can never be Cohen-Macaulay unless $G$ is a disjoint union of edges.\\nAdditionally, we provide tight bounds for the regularity and depth of\\n$I(G)^{[k]}$ when $G$ is either a cycle or a whiskered cycle, which aids in\\nidentifying when such ideals have linear resolution. Furthermore, we provide\\ncombinatorial formulas for the depth of second square-free powers of edge\\nideals of cycles and whiskered cycles. We also obtained an explicit formula of\\nthe regularity of second square-free power for whiskered cycles.\",\"PeriodicalId\":501475,\"journal\":{\"name\":\"arXiv - MATH - Commutative Algebra\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Commutative Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.06021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Commutative Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让 $I(G)^{[k]}$ 表示图 $G$ 的边理想$I(G)$ 的 $k^{th}$ 无平方幂。在本文中,我们提供了当 $G$ 是科恩-麦考莱森林时,$I(G)^{[k]}$ 的深度的精确公式。利用这个公式,我们证明了对于科恩-马卡莱森林 $G$,$I(G)$ 的 $k^{th}$ 无平方幂总是科恩-马卡莱幂,这是非常令人惊讶的,因为除非 $G$ 是边的不相邻联盟,否则 $I(G)$ 的所有普通幂永远不可能是科恩-马卡莱幂。此外,当 $G$ 是一个循环或须循环时,我们还为 $I(G)^{[k]}$ 的正则性和深度提供了严格的约束,这有助于确定这类理想何时具有线性分辨率。此外,我们还提供了循环和须循环的边矢的二次无平方幂深度的组合公式。我们还得到了whiskered 循环的无二次平方幂正则性的明确公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Square-free powers of Cohen-Macaulay forests, cycles, and whiskered cycles
Let $I(G)^{[k]}$ denote the $k^{th}$ square-free power of the edge ideal $I(G)$ of a graph $G$. In this article, we provide a precise formula for the depth of $I(G)^{[k]}$ when $G$ is a Cohen-Macaulay forest. Using this, we show that for a Cohen-Macaualy forest $G$, the $k^{th}$ square-free power of $I(G)$ is always Cohen-Macaulay, which is quite surprising since all ordinary powers of $I(G)$ can never be Cohen-Macaulay unless $G$ is a disjoint union of edges. Additionally, we provide tight bounds for the regularity and depth of $I(G)^{[k]}$ when $G$ is either a cycle or a whiskered cycle, which aids in identifying when such ideals have linear resolution. Furthermore, we provide combinatorial formulas for the depth of second square-free powers of edge ideals of cycles and whiskered cycles. We also obtained an explicit formula of the regularity of second square-free power for whiskered cycles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信