科斯祖尔同构中的单项式循环

Jacob Zoromski
{"title":"科斯祖尔同构中的单项式循环","authors":"Jacob Zoromski","doi":"arxiv-2409.07583","DOIUrl":null,"url":null,"abstract":"In this paper we study monomial cycles in Koszul homology over a monomial\nring. The main result is that a monomial cycle is a boundary precisely when the\nmonomial representing that cycle is contained in an ideal we introduce called\nthe boundary ideal. As a consequence, we obtain necessary ideal-theoretic\nconditions for a monomial ideal to be Golod. We classify Golod monomial ideals\nin four variables in terms of these conditions. We further apply these\nconditions to symmetric monomial ideals, allowing us to classify Golod ideals\ngenerated by the permutations of one monomial. Lastly, we show that a class of\nideals with linear quotients admit a basis for Koszul homology consisting of\nmonomial cycles. This class includes the famous case of stable monomial ideals\nas well as new cases, such as symmetric shifted ideals.","PeriodicalId":501475,"journal":{"name":"arXiv - MATH - Commutative Algebra","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Monomial Cycles in Koszul Homology\",\"authors\":\"Jacob Zoromski\",\"doi\":\"arxiv-2409.07583\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we study monomial cycles in Koszul homology over a monomial\\nring. The main result is that a monomial cycle is a boundary precisely when the\\nmonomial representing that cycle is contained in an ideal we introduce called\\nthe boundary ideal. As a consequence, we obtain necessary ideal-theoretic\\nconditions for a monomial ideal to be Golod. We classify Golod monomial ideals\\nin four variables in terms of these conditions. We further apply these\\nconditions to symmetric monomial ideals, allowing us to classify Golod ideals\\ngenerated by the permutations of one monomial. Lastly, we show that a class of\\nideals with linear quotients admit a basis for Koszul homology consisting of\\nmonomial cycles. This class includes the famous case of stable monomial ideals\\nas well as new cases, such as symmetric shifted ideals.\",\"PeriodicalId\":501475,\"journal\":{\"name\":\"arXiv - MATH - Commutative Algebra\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Commutative Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07583\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Commutative Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07583","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们研究了在单项式环上的科斯祖尔同源性中的单项式循环。主要结果是,当代表该循环的单项式包含在我们引入的称为边界理想的理想中时,该单项式循环就是边界。因此,我们得到了单项式理想是戈洛德理想的必要理想论条件。我们根据这些条件对四变量中的戈洛德单项式理想进行分类。我们进一步将这些条件应用于对称单项式理想,从而对由一个单项式的置换产生的戈洛德理想进行了分类。最后,我们证明了一类具有线性商的理想包含一个由单项式循环组成的科斯祖尔同源性基础。这一类包括著名的稳定单项式理想以及对称移位理想等新情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Monomial Cycles in Koszul Homology
In this paper we study monomial cycles in Koszul homology over a monomial ring. The main result is that a monomial cycle is a boundary precisely when the monomial representing that cycle is contained in an ideal we introduce called the boundary ideal. As a consequence, we obtain necessary ideal-theoretic conditions for a monomial ideal to be Golod. We classify Golod monomial ideals in four variables in terms of these conditions. We further apply these conditions to symmetric monomial ideals, allowing us to classify Golod ideals generated by the permutations of one monomial. Lastly, we show that a class of ideals with linear quotients admit a basis for Koszul homology consisting of monomial cycles. This class includes the famous case of stable monomial ideals as well as new cases, such as symmetric shifted ideals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信