{"title":"篮球悖论:探索无位置比赛中 NBA 球队的防守效率","authors":"Charles South","doi":"10.1515/jqas-2024-0010","DOIUrl":null,"url":null,"abstract":"In the last decade, the offensive and defensive philosophies employed by teams in the National Basketball Association (NBA) have changed substantially. As a result, most players can no longer be classified into only one of the five traditional positions (PG, SG, SF, PF, C) and instead spend a percentage of their playing time at multiple positions, making positional data compositional. Further, given the desirability for versatile players, an argument can be made that traditional positions themselves are archaic. Using data from the 2016–17, 2017–18, and 2018–19 seasons, I explore how Bayesian hierarchical models can be used to estimate team defensive strength in three ways. First, only considering players classified by their majority traditional position. Second, by using compositional traditional positional data. Third, using compositional data from modern positions (archetypes) defined by fuzzy <jats:italic>k</jats:italic>-means clustering. I find that the fuzzy <jats:italic>k</jats:italic>-means approach leads to a modest improvement in both the root mean squared error and median 95 % posterior predictive interval width for the test data, and, more importantly, identifies 11 modern archetypes that, when combined, are correlated with team win total and adjusted team defensive rating. The modern archetype compositions can be used by stakeholders to better understand team defensive strength.","PeriodicalId":16925,"journal":{"name":"Journal of Quantitative Analysis in Sports","volume":"25 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A basketball paradox: exploring NBA team defensive efficiency in a positionless game\",\"authors\":\"Charles South\",\"doi\":\"10.1515/jqas-2024-0010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the last decade, the offensive and defensive philosophies employed by teams in the National Basketball Association (NBA) have changed substantially. As a result, most players can no longer be classified into only one of the five traditional positions (PG, SG, SF, PF, C) and instead spend a percentage of their playing time at multiple positions, making positional data compositional. Further, given the desirability for versatile players, an argument can be made that traditional positions themselves are archaic. Using data from the 2016–17, 2017–18, and 2018–19 seasons, I explore how Bayesian hierarchical models can be used to estimate team defensive strength in three ways. First, only considering players classified by their majority traditional position. Second, by using compositional traditional positional data. Third, using compositional data from modern positions (archetypes) defined by fuzzy <jats:italic>k</jats:italic>-means clustering. I find that the fuzzy <jats:italic>k</jats:italic>-means approach leads to a modest improvement in both the root mean squared error and median 95 % posterior predictive interval width for the test data, and, more importantly, identifies 11 modern archetypes that, when combined, are correlated with team win total and adjusted team defensive rating. The modern archetype compositions can be used by stakeholders to better understand team defensive strength.\",\"PeriodicalId\":16925,\"journal\":{\"name\":\"Journal of Quantitative Analysis in Sports\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Quantitative Analysis in Sports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/jqas-2024-0010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"SOCIAL SCIENCES, MATHEMATICAL METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Quantitative Analysis in Sports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jqas-2024-0010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"SOCIAL SCIENCES, MATHEMATICAL METHODS","Score":null,"Total":0}
引用次数: 0
摘要
在过去十年中,美国篮球协会(NBA)各队采用的进攻和防守理念发生了巨大变化。因此,大多数球员不再只能被归类到五个传统位置(PG、SG、SF、PF、C)中的一个,而是在多个位置上花费一定比例的上场时间,这就使得位置数据具有了构成性。此外,鉴于人们对全能球员的渴望,可以说传统位置本身已经过时。利用2016-17、2017-18和2018-19赛季的数据,我从三个方面探讨了如何利用贝叶斯层次模型来估计球队的防守强度。首先,只考虑按主要传统位置分类的球员。第二,使用传统位置的组成数据。第三,使用模糊均值聚类所定义的现代位置(原型)的组成数据。我发现,模糊 K 均值聚类方法使测试数据的均方根误差和中位 95 % 后验预测区间宽度都得到了适度改善,更重要的是,它识别出了 11 种现代原型,这些原型组合起来与球队总胜场数和调整后的球队防守评级相关。利益相关者可以利用现代原型组合更好地了解球队的防守实力。
A basketball paradox: exploring NBA team defensive efficiency in a positionless game
In the last decade, the offensive and defensive philosophies employed by teams in the National Basketball Association (NBA) have changed substantially. As a result, most players can no longer be classified into only one of the five traditional positions (PG, SG, SF, PF, C) and instead spend a percentage of their playing time at multiple positions, making positional data compositional. Further, given the desirability for versatile players, an argument can be made that traditional positions themselves are archaic. Using data from the 2016–17, 2017–18, and 2018–19 seasons, I explore how Bayesian hierarchical models can be used to estimate team defensive strength in three ways. First, only considering players classified by their majority traditional position. Second, by using compositional traditional positional data. Third, using compositional data from modern positions (archetypes) defined by fuzzy k-means clustering. I find that the fuzzy k-means approach leads to a modest improvement in both the root mean squared error and median 95 % posterior predictive interval width for the test data, and, more importantly, identifies 11 modern archetypes that, when combined, are correlated with team win total and adjusted team defensive rating. The modern archetype compositions can be used by stakeholders to better understand team defensive strength.
期刊介绍:
The Journal of Quantitative Analysis in Sports (JQAS), an official journal of the American Statistical Association, publishes timely, high-quality peer-reviewed research on the quantitative aspects of professional and amateur sports, including collegiate and Olympic competition. The scope of application reflects the increasing demand for novel methods to analyze and understand data in the growing field of sports analytics. Articles come from a wide variety of sports and diverse perspectives, and address topics such as game outcome models, measurement and evaluation of player performance, tournament structure, analysis of rules and adjudication, within-game strategy, analysis of sporting technologies, and player and team ranking methods. JQAS seeks to publish manuscripts that demonstrate original ways of approaching problems, develop cutting edge methods, and apply innovative thinking to solve difficult challenges in sports contexts. JQAS brings together researchers from various disciplines, including statistics, operations research, machine learning, scientific computing, econometrics, and sports management.