{"title":"生物医学应用中的隐私保护分散学习方法","authors":"Mohammad Tajabadi, Roman Martin, Dominik Heider","doi":"10.1016/j.csbj.2024.08.024","DOIUrl":null,"url":null,"abstract":"In recent years, decentralized machine learning has emerged as a significant advancement in biomedical applications, offering robust solutions for data privacy, security, and collaboration across diverse healthcare environments. In this review, we examine various decentralized learning methodologies, including federated learning, split learning, swarm learning, gossip learning, edge learning, and some of their applications in the biomedical field. We delve into the underlying principles, network topologies, and communication strategies of each approach, highlighting their advantages and limitations. Ultimately, the selection of a suitable method should be based on specific needs, infrastructures, and computational capabilities.","PeriodicalId":10715,"journal":{"name":"Computational and structural biotechnology journal","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Privacy-preserving decentralized learning methods for biomedical applications\",\"authors\":\"Mohammad Tajabadi, Roman Martin, Dominik Heider\",\"doi\":\"10.1016/j.csbj.2024.08.024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, decentralized machine learning has emerged as a significant advancement in biomedical applications, offering robust solutions for data privacy, security, and collaboration across diverse healthcare environments. In this review, we examine various decentralized learning methodologies, including federated learning, split learning, swarm learning, gossip learning, edge learning, and some of their applications in the biomedical field. We delve into the underlying principles, network topologies, and communication strategies of each approach, highlighting their advantages and limitations. Ultimately, the selection of a suitable method should be based on specific needs, infrastructures, and computational capabilities.\",\"PeriodicalId\":10715,\"journal\":{\"name\":\"Computational and structural biotechnology journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational and structural biotechnology journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.csbj.2024.08.024\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and structural biotechnology journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.csbj.2024.08.024","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Privacy-preserving decentralized learning methods for biomedical applications
In recent years, decentralized machine learning has emerged as a significant advancement in biomedical applications, offering robust solutions for data privacy, security, and collaboration across diverse healthcare environments. In this review, we examine various decentralized learning methodologies, including federated learning, split learning, swarm learning, gossip learning, edge learning, and some of their applications in the biomedical field. We delve into the underlying principles, network topologies, and communication strategies of each approach, highlighting their advantages and limitations. Ultimately, the selection of a suitable method should be based on specific needs, infrastructures, and computational capabilities.
期刊介绍:
Computational and Structural Biotechnology Journal (CSBJ) is an online gold open access journal publishing research articles and reviews after full peer review. All articles are published, without barriers to access, immediately upon acceptance. The journal places a strong emphasis on functional and mechanistic understanding of how molecular components in a biological process work together through the application of computational methods. Structural data may provide such insights, but they are not a pre-requisite for publication in the journal. Specific areas of interest include, but are not limited to:
Structure and function of proteins, nucleic acids and other macromolecules
Structure and function of multi-component complexes
Protein folding, processing and degradation
Enzymology
Computational and structural studies of plant systems
Microbial Informatics
Genomics
Proteomics
Metabolomics
Algorithms and Hypothesis in Bioinformatics
Mathematical and Theoretical Biology
Computational Chemistry and Drug Discovery
Microscopy and Molecular Imaging
Nanotechnology
Systems and Synthetic Biology