Luis Guilherme Foresto, Silvia Fernanda Moya, Raphael Soeiro Suppino
{"title":"用实验方法估算 N-[3-(二甲基氨基)丙基]十六酰胺的形成焓","authors":"Luis Guilherme Foresto, Silvia Fernanda Moya, Raphael Soeiro Suppino","doi":"10.1007/s43153-024-00502-7","DOIUrl":null,"url":null,"abstract":"<p>The <i>N-[3-(Dimethylamino)propyl] hexadecanamide</i> (DMPH) molecule is an important intermediate for synthesizing amphoteric and quaternary ammonium surfactants. Despite its importance for the household and personal care sectors, little to no information about its enthalpy of formation is found in the NIST database or literature, which hinders many industrial operations, especially its chemical production, by consuming much more energy than necessary. In this work, we present a first estimative of <i>N-[3-(Dimethylamino)propyl] hexadecanamide's</i> standard enthalpy of formation with a simple procedure that can be used to obtain similar parameters in chemical industry laboratories. The enthalpy estimative was obtained by reacting palmitic acid and dimethylaminopropylamine (DMAPA), yielding the desired compound. Hess's law was used to determine the enthalpy of the reaction through the heat associated with the extent of the reaction. The reagents were contacted in a simple calorimeter at room temperature (diluted with acetone) and 373.15 K (without acetone). The extent of the reaction was obtained by quantitative determination of the reaction medium in gas chromatography. The room temperature experiment led to an insignificant extent of reaction, which generated an unreliable result for the DMPH enthalpy of formation. In contrast, at 373.15 K, the estimated standard enthalpy of the reaction was adequately calculated, leading to an enthalpy of formation of − 753.86 ± 84.83 kJ/mol for the <i>N-[3-(Dimethylamino)propyl] hexadecanamide.</i> With this simple procedure, the heat consumption of an industrial reactor can be calculated with more precision, yielding economic and environmental benefits.</p>","PeriodicalId":9194,"journal":{"name":"Brazilian Journal of Chemical Engineering","volume":"30 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimated enthalpy of formation of N-[3-(Dimethylamino)propyl] hexadecanamide by experimental approach\",\"authors\":\"Luis Guilherme Foresto, Silvia Fernanda Moya, Raphael Soeiro Suppino\",\"doi\":\"10.1007/s43153-024-00502-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The <i>N-[3-(Dimethylamino)propyl] hexadecanamide</i> (DMPH) molecule is an important intermediate for synthesizing amphoteric and quaternary ammonium surfactants. Despite its importance for the household and personal care sectors, little to no information about its enthalpy of formation is found in the NIST database or literature, which hinders many industrial operations, especially its chemical production, by consuming much more energy than necessary. In this work, we present a first estimative of <i>N-[3-(Dimethylamino)propyl] hexadecanamide's</i> standard enthalpy of formation with a simple procedure that can be used to obtain similar parameters in chemical industry laboratories. The enthalpy estimative was obtained by reacting palmitic acid and dimethylaminopropylamine (DMAPA), yielding the desired compound. Hess's law was used to determine the enthalpy of the reaction through the heat associated with the extent of the reaction. The reagents were contacted in a simple calorimeter at room temperature (diluted with acetone) and 373.15 K (without acetone). The extent of the reaction was obtained by quantitative determination of the reaction medium in gas chromatography. The room temperature experiment led to an insignificant extent of reaction, which generated an unreliable result for the DMPH enthalpy of formation. In contrast, at 373.15 K, the estimated standard enthalpy of the reaction was adequately calculated, leading to an enthalpy of formation of − 753.86 ± 84.83 kJ/mol for the <i>N-[3-(Dimethylamino)propyl] hexadecanamide.</i> With this simple procedure, the heat consumption of an industrial reactor can be calculated with more precision, yielding economic and environmental benefits.</p>\",\"PeriodicalId\":9194,\"journal\":{\"name\":\"Brazilian Journal of Chemical Engineering\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brazilian Journal of Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s43153-024-00502-7\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brazilian Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s43153-024-00502-7","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Estimated enthalpy of formation of N-[3-(Dimethylamino)propyl] hexadecanamide by experimental approach
The N-[3-(Dimethylamino)propyl] hexadecanamide (DMPH) molecule is an important intermediate for synthesizing amphoteric and quaternary ammonium surfactants. Despite its importance for the household and personal care sectors, little to no information about its enthalpy of formation is found in the NIST database or literature, which hinders many industrial operations, especially its chemical production, by consuming much more energy than necessary. In this work, we present a first estimative of N-[3-(Dimethylamino)propyl] hexadecanamide's standard enthalpy of formation with a simple procedure that can be used to obtain similar parameters in chemical industry laboratories. The enthalpy estimative was obtained by reacting palmitic acid and dimethylaminopropylamine (DMAPA), yielding the desired compound. Hess's law was used to determine the enthalpy of the reaction through the heat associated with the extent of the reaction. The reagents were contacted in a simple calorimeter at room temperature (diluted with acetone) and 373.15 K (without acetone). The extent of the reaction was obtained by quantitative determination of the reaction medium in gas chromatography. The room temperature experiment led to an insignificant extent of reaction, which generated an unreliable result for the DMPH enthalpy of formation. In contrast, at 373.15 K, the estimated standard enthalpy of the reaction was adequately calculated, leading to an enthalpy of formation of − 753.86 ± 84.83 kJ/mol for the N-[3-(Dimethylamino)propyl] hexadecanamide. With this simple procedure, the heat consumption of an industrial reactor can be calculated with more precision, yielding economic and environmental benefits.
期刊介绍:
The Brazilian Journal of Chemical Engineering is a quarterly publication of the Associação Brasileira de Engenharia Química (Brazilian Society of Chemical Engineering - ABEQ) aiming at publishing papers reporting on basic and applied research and innovation in the field of chemical engineering and related areas.